Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(10): 3453-3465, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38455000

RESUMO

Combining pulsed laser heating and time-resolved infrared (TR-IR) absorption spectroscopy provides a means of initiating and studying thermally activated chemical reactions and diffusion processes in heterogeneous catalysts on timescales from nanoseconds to seconds. To this end, we investigated single pulse and burst laser heating in zeolite catalysts under realistic conditions using TR-IR spectroscopy. 1 ns, 70 µJ, 2.8 µm laser pulses from a Nd:YAG-pumped optical parametric oscillator were observed to induce temperature-jumps (T-jumps) in zeolite pellets in nanoseconds, with the sample cooling over 1-3 ms. By adopting a tightly focused beam geometry, T-jumps as large as 145 °C from the starting temperature were achieved, demonstrated through comparison of the TR-IR spectra with temperature dependent IR absorption spectra and three dimensional heat transfer modelling using realistic experimental parameters. The simulations provide a detailed understanding of the temperature distribution within the sample and its evolution over the cooling period, which we observe to be bi-exponential. These results provide foundations for determining the magnitude of a T-jump in a catalyst/adsorbate system from its absorption spectrum and physical properties, and for applying T-jump TR-IR spectroscopy to the study of reactive chemistry in heterogeneous catalysts.

2.
Opt Express ; 31(25): 42687-42700, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087637

RESUMO

Two-dimensional electronic spectroscopy (2DES) provides detailed insight into coherent ultrafast molecular dynamics in the condensed phase. Here we report a referenced broadband pump-compressed continuum probe half-broadband (HB) 2DES spectrometer in a partially collinear geometry. To optimize signal-to-noise ratio (SNR) we implement active noise reduction referencing, which has not previously been applied in 2DES. The method is calibrated against the well characterized 2DES response of the oxazine dye cresyl violet and demonstrated at visible wavelengths on the photochromic photoswitch 1,2-Bis(2-methyl-5-phenyl-3-thienyl) perfluorocyclopentene (DAE). The SNR is improved by a factor of ∼2 through active referencing. This is illustrated in an application to resolve a low frequency mode in the excited electronic state of DAE, yielding new data on the reaction coordinate. We show that the active noise reduction referencing, coupled with the rapid data collection, allows the extraction of weak vibronic features, most notably a low frequency mode in the excited electronic state of DAE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA