Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(4): e16617, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558266

RESUMO

Sunlight penetrates the ice surfaces of glaciers and ice sheets, forming a water-bearing porous ice matrix known as the weathering crust. This crust is home to a significant microbial community. Despite the potential implications of microbial processes in the weathering crust for glacial melting, biogeochemical cycles, and downstream ecosystems, there have been few explorations of its microbial communities. In our study, we used 16S rRNA gene sequencing and shotgun metagenomics of a Svalbard glacier surface catchment to characterise the microbial communities within the weathering crust, their origins and destinies, and the functional potential of the weathering crust metagenome. Our findings reveal that the bacterial community in the weathering crust is distinct from those in upstream and downstream habitats. However, it comprises two separate micro-habitats, each with different taxa and functional categories. The interstitial porewater is dominated by Polaromonas, influenced by the transfer of snowmelt, and exported via meltwater channels. In contrast, the ice matrix is dominated by Hymenobacter, and its metagenome exhibits a diverse range of functional adaptations. Given that the global weathering crust area and the subsequent release of microbes from it are strongly responsive to climate projections for the rest of the century, our results underscore the pressing need to integrate the microbiome of the weathering crust with other communities and processes in glacial ecosystems.


Assuntos
Camada de Gelo , Microbiota , Camada de Gelo/microbiologia , RNA Ribossômico 16S/genética , Microbiota/genética , Bactérias/genética , Regiões Árticas
2.
Mar Environ Res ; 198: 106518, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38648698

RESUMO

Kelp forests occur on more than a quarter of the world's coastlines, serving as foundation species supporting high levels of biodiversity. They are also a major source of organic matter in coastal ecosystems, with the majority of primary production released and exported as detritus. Kelp detritus also provides food and shelter for macroinvertebrates, which comprise important components of inshore food-webs. Hitherto, research on kelp detritus-associated macroinvertebrate assemblages remains relatively limited. We quantified spatiotemporal variability in the structure of detritus-associated macroinvertebrate assemblages within Laminaria hyperborea forests and evaluated the influence of putative drivers of the observed variability in assemblages across eight study sites within four regions of the United Kingdom in May and September 2015. We documented 5167 individuals from 106 taxa with Malacostraca, Gastropoda, Isopoda and Bivalvia the most abundant groups sampled. Assemblage structure varied across months, sites, and regions, with highest richness in September compared to May. Many taxa were unique to individual regions, with few documented in all regions. Finally, key drivers of assemblage structure included detritus tissue nitrogen content, depth, sea surface temperature, light intensity, as well as L. hyperborea canopy density and canopy biomass. Despite their dynamic composition and transient existence, accumulations of L. hyperborea detritus represent valuable repositories of biodiversity and represent an additional kelp forest component which influences secondary productivity, and potentially kelp forest food-web dynamics.

3.
Microb Genom ; 9(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37937832

RESUMO

The rapid warming of the Arctic is threatening the demise of its glaciers and their associated ecosystems. Therefore, there is an urgent need to explore and understand the diversity of genomes resident within glacial ecosystems endangered by human-induced climate change. In this study we use genome-resolved metagenomics to explore the taxonomic and functional diversity of different habitats within glacier-occupied catchments. Comparing different habitats within such catchments offers a natural experiment for understanding the effects of changing habitat extent or even loss upon Arctic microbiota. Through binning and annotation of metagenome-assembled genomes (MAGs) we describe the spatial differences in taxon distribution and their implications for glacier-associated biogeochemical cycling. Multiple taxa associated with carbon cycling included organisms with the potential for carbon monoxide oxidation. Meanwhile, nitrogen fixation was mediated by a single taxon, although diverse taxa contribute to other nitrogen conversions. Genes for sulphur oxidation were prevalent within MAGs implying the potential capacity for sulphur cycling. Finally, we focused on cyanobacterial MAGs, and those within cryoconite, a biodiverse microbe-mineral granular aggregate responsible for darkening glacier surfaces. Although the metagenome-assembled genome of Phormidesmis priestleyi, the cyanobacterium responsible for forming Arctic cryoconite was represented with high coverage, evidence for the biosynthesis of multiple vitamins and co-factors was absent from its MAG. Our results indicate the potential for cross-feeding to sustain P. priestleyi within granular cryoconite. Taken together, genome-resolved metagenomics reveals the vulnerability of glacier-associated microbiota to the deletion of glacial habitats through the rapid warming of the Arctic.


Assuntos
Camada de Gelo , Microbiota , Humanos , Camada de Gelo/química , Camada de Gelo/microbiologia , Metagenoma , Microbiota/genética , Biodiversidade , Enxofre
4.
Environ Microbiol ; 25(12): 3116-3138, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688461

RESUMO

Glacier retreat is a visible consequence of climate change worldwide. Although taxonomic change of the soil microbiomes in glacier forefields have been widely documented, how microbial genetic potential changes along succession is little known. Here, we used shotgun metagenomics to analyse whether the soil microbial genetic potential differed between four stages of soil development (SSD) sampled along three transects in the Damma glacier forefield (Switzerland). The SSDs were characterized by an increasing vegetation cover, from barren soil, to biological soil crust, to sparsely vegetated soil and finally to vegetated soil. Results suggested that SSD significantly influenced microbial genetic potential, with the lowest functional diversity surprisingly occurring in the vegetated soils. Overall, carbohydrate metabolism and secondary metabolite biosynthesis genes overrepresented in vegetated soils, which could be partly attributed to plant-soil feedbacks. For C degradation, glycoside hydrolase genes enriched in vegetated soils, while auxiliary activity and carbohydrate esterases genes overrepresented in barren soils, suggested high labile C degradation potential in vegetated, and high recalcitrant C degradation potential in barren soils. For N-cycling, organic N degradation and synthesis genes dominated along succession, and gene families involved in nitrification were overrepresented in barren soils. Our study provides new insights into how the microbial genetic potential changes during soil formation along the Damma glacier forefield.


Assuntos
Camada de Gelo , Solo , Microbiologia do Solo , Plantas , Nitrificação
5.
Environ Microbiol ; 25(11): 2549-2563, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37621052

RESUMO

Glaciers host ecosystems comprised of biodiverse and active microbiota. Among glacial ecosystems, less is known about the ecology of ice caps since most studies focus on valley glaciers or ice sheet margins. Previously we detailed the microbiota of one such high Arctic ice cap, focusing on cryoconite as a microbe-mineral aggregate formed by cyanobacteria. Here, we employ metabolomics at the scale of an entire ice cap to reveal the major metabolic pathways prevailing in the cryoconite of Foxfonna, central Svalbard. We reveal how geophysical and biotic processes influence the metabolomes of its resident cryoconite microbiota. We observed differences in amino acid, fatty acid, and nucleotide synthesis across the cap reflecting the influence of ice topography and the cyanobacteria within cryoconite. Ice topography influences central carbohydrate metabolism and nitrogen assimilation, whereas bacterial community structure governs lipid, nucleotide, and carotenoid biosynthesis processes. The prominence of polyamine metabolism and nitrogen assimilation highlights the importance of recycling nitrogenous nutrients. To our knowledge, this study represents the first application of metabolomics across an entire ice mass, demonstrating its utility as a tool for revealing the fundamental metabolic processes essential for sustaining life in supraglacial ecosystems experiencing profound change due to Arctic climate change-driven mass loss.


Assuntos
Cianobactérias , Microbiota , Ecossistema , Ecologia , Regiões Árticas , Camada de Gelo/microbiologia , Nitrogênio , Nucleotídeos
6.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902282

RESUMO

Understanding the impact of long-term physiological and environmental stress on the human microbiota and metabolome may be important for the success of space flight. This work is logistically difficult and has a limited number of available participants. Terrestrial analogies present important opportunities to understand changes in the microbiota and metabolome and how this may impact participant health and fitness. Here, we present work from one such analogy: the Transarctic Winter Traverse expedition, which we believe is the first assessment of the microbiota and metabolome from different bodily locations during prolonged environmental and physiological stress. Bacterial load and diversity were significantly higher during the expedition when compared with baseline levels (p < 0.001) in saliva but not stool, and only a single operational taxonomic unit assigned to the Ruminococcaceae family shows significantly altered levels in stool (p < 0.001). Metabolite fingerprints show the maintenance of individual differences across saliva, stool, and plasma samples when analysed using flow infusion electrospray mass spectrometry and Fourier transform infrared spectroscopy. Significant activity-associated changes in terms of both bacterial diversity and load are seen in saliva but not in stool, and participant differences in metabolite fingerprints persist across all three sample types.


Assuntos
Expedições , Microbiota , Humanos , Saliva/metabolismo , Carga Bacteriana , Regiões Antárticas , Individualidade , Microbiota/fisiologia , Metaboloma/fisiologia , Fezes/microbiologia , RNA Ribossômico 16S/metabolismo
8.
Microbiome ; 10(1): 50, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35317857

RESUMO

BACKGROUND: Cryoconite granules are mineral-microbial aggregates found on glacier surfaces worldwide and are hotspots of biogeochemical reactions in glacier ecosystems. However, despite their importance within glacier ecosystems, the geographical diversity of taxonomic assemblages and metabolic potential of cryoconite communities around the globe remain unclear. In particular, the genomic content of cryoconite communities on Asia's high mountain glaciers, which represent a substantial portion of Earth's ice masses, has rarely been reported. Therefore, in this study, to elucidate the taxonomic and ecological diversities of cryoconite bacterial consortia on a global scale, we conducted shotgun metagenomic sequencing of cryoconite acquired from a range of geographical areas comprising Polar (Arctic and Antarctic) and Asian alpine regions. RESULTS: Our metagenomic data indicate that compositions of both bacterial taxa and functional genes are particularly distinctive for Asian cryoconite. Read abundance of the genes responsible for denitrification was significantly more abundant in Asian cryoconite than the Polar cryoconite, implying that denitrification is more enhanced in Asian glaciers. The taxonomic composition of Cyanobacteria, the key primary producers in cryoconite communities, also differs between the Polar and Asian samples. Analyses on the metagenome-assembled genomes and fluorescence emission spectra reveal that Asian cryoconite is dominated by multiple cyanobacterial lineages possessing phycoerythrin, a green light-harvesting component for photosynthesis. In contrast, Polar cryoconite is dominated by a single cyanobacterial species Phormidesmis priestleyi that does not possess phycoerythrin. These findings suggest that the assemblage of cryoconite bacterial communities respond to regional- or glacier-specific physicochemical conditions, such as the availability of nutrients (e.g., nitrate and dissolved organic carbon) and light (i.e., incident shortwave radiation). CONCLUSIONS: Our genome-resolved metagenomics provides the first characterization of the taxonomic and metabolic diversities of cryoconite from contrasting geographical areas, highlighted by the distinct light-harvesting approaches of Cyanobacteria and nitrogen utilization between Polar and Asian cryoconite, and implies the existence of environmental controls on the assemblage of cryoconite communities. These findings deepen our understanding of the biodiversity and biogeochemical cycles of glacier ecosystems, which are susceptible to ongoing climate change and glacier decline, on a global scale. Video abstract.


Assuntos
Cianobactérias , Camada de Gelo , Cianobactérias/genética , Ecossistema , Camada de Gelo/microbiologia , Metagenômica , Nitrogênio/metabolismo , Ficoeritrina/metabolismo
9.
Front Microbiol ; 12: 738451, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899626

RESUMO

Cryoconite holes, supraglacial depressions containing water and microbe-mineral aggregates, are known to be hotspots of microbial diversity on glacial surfaces. Cryoconite holes form in a variety of locations and conditions, which impacts both their structure and the community that inhabits them. Using high-throughput 16S and 18S rRNA gene sequencing, we have investigated the communities of a wide range of cryoconite holes from 15 locations across the Arctic and Antarctic. Around 24 bacterial and 11 eukaryotic first-rank phyla were observed in total. The various biotic niches (grazer, predator, photoautotroph, and chemotroph), are filled in every location. Significantly, there is a clear divide between the bacterial and microalgal communities of the Arctic and that of the Antarctic. We were able to determine the groups contributing to this difference and the family and genus level. Both polar regions contain a "core group" of bacteria that are present in the majority of cryoconite holes and each contribute >1% of total amplicon sequence variant (ASV) abundance. Whilst both groups contain Microbacteriaceae, the remaining members are specific to the core group of each polar region. Additionally, the microalgal communities of Arctic cryoconite holes are dominated by Chlamydomonas whereas the Antarctic cryoconite holes are dominated by Pleurastrum. Therefore cryoconite holes may be a global feature of glacier landscapes, but they are inhabited by regionally distinct microbial communities. Our results are consistent with the notion that cryoconite microbiomes are adapted to differing conditions within the cryosphere.

10.
Sci Rep ; 11(1): 21785, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750421

RESUMO

The results show the morphological analyses and spectroscopic studies of snow and glacier algae and their parasitic fungi in Svalbard (High Arctic). Fixed algal cells of two species, Sanguina nivaloides and Ancylonema nordenskioeldii, were imaged using light microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Fluorescence microscopy using Calcofluor white stain supported the observations of parasitic fungi on the algal cells. Images in brightfield microscopy showed chytrid-like fungi penetrating the cells of both algal species. Parasites were found to colonize the cells of A. nordenskioeldii and hypnozygotes of S. nivaloides, while no fungi infected the cyst stages of S. nivaloides. The autofluorescence analysis revealed the ability of S. nivaloides to glow when excited with different wavelengths, while A. nordenskioeldii did not fluoresce. The hypnozygotes of S. nivaloides emitted brighter fluorescence than the cysts, and the most intense luminosity was observed in the UV range. The Fourier-transform infrared spectroscopy (FTIR) and energy-dispersive X-ray spectroscopy (EDS) spectroscopic analysis showed differences in the chemical composition between samples collected from three different sites. Samples dominated by cyst cells were characterized by the presence of an abundant polysaccharide envelope.

11.
Nat Commun ; 11(1): 4403, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879312

RESUMO

Bacteriophage genomes rapidly evolve via mutation and horizontal gene transfer to counter evolving bacterial host defenses; such arms race dynamics should lead to divergence between phages from similar, geographically isolated ecosystems. However, near-identical phage genomes can reoccur over large geographical distances and several years apart, conversely suggesting many are stably maintained. Here, we show that phages with near-identical core genomes in distant, discrete aquatic ecosystems maintain diversity by possession of numerous flexible gene modules, where homologous genes present in the pan-genome interchange to create new phage variants. By repeatedly reconstructing the core and flexible regions of phage genomes from different metagenomes, we show a pool of homologous gene variants co-exist for each module in each location, however, the dominant variant shuffles independently in each module. These results suggest that in a natural community, recombination is the largest contributor to phage diversity, allowing a variety of host recognition receptors and genes to counter bacterial defenses to co-exist for each phage.


Assuntos
Bacteriófagos/genética , Camada de Gelo/virologia , Metagenoma , Cianobactérias/virologia , Ecossistema , Transferência Genética Horizontal , Genes Virais , Genoma Viral , Interações entre Hospedeiro e Microrganismos/genética , Camada de Gelo/microbiologia , Metagenômica , Filogenia
12.
Environ Microbiol ; 22(8): 3172-3187, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32383292

RESUMO

Glaciers are melting rapidly. The concurrent export of microbial assemblages alongside glacial meltwater is expected to impact the ecology of adjoining ecosystems. Currently, the source of exported assemblages is poorly understood, yet this information may be critical for understanding how current and future glacial melt seasons may influence downstream environments. We report on the connectivity and temporal variability of microbiota sampled from supraglacial, subglacial and periglacial habitats and water bodies within a glacial catchment. Sampled assemblages showed evidence of being biologically connected through hydrological flowpaths, leading to a meltwater system that accumulates prokaryotic biota as it travels downstream. Temporal changes in the connected assemblages were similarly observed. Snow assemblages changed markedly throughout the sample period, likely reflecting changes in the surrounding environment. Changes in supraglacial meltwater assemblages reflected the transition of the glacial surface from snow-covered to bare-ice. Marked snowmelt across the surrounding periglacial environment resulted in the flushing of soil assemblages into the riverine system. In contrast, surface ice within the ablation zone and subglacial meltwaters remained relatively stable throughout the sample period. Our results are indicative that changes in snow and ice melt across glacial environments will influence the abundance and diversity of microbial assemblages transported downstream.


Assuntos
Camada de Gelo/microbiologia , Microbiologia da Água , Aquecimento Global , Hidrologia , Microbiota , Neve , Solo
13.
Microb Genom ; 6(5)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32392124

RESUMO

The Arctic is warming - fast. Microbes in the Arctic play pivotal roles in feedbacks that magnify the impacts of Arctic change. Understanding the genome evolution, diversity and dynamics of Arctic microbes can provide insights relevant for both fundamental microbiology and interdisciplinary Arctic science. Within this synthesis, we highlight four key areas where genomic insights to the microbial dimensions of Arctic change are urgently required: the changing Arctic Ocean, greenhouse gas release from the thawing permafrost, 'biological darkening' of glacial surfaces, and human activities within the Arctic. Furthermore, we identify four principal challenges that provide opportunities for timely innovation in Arctic microbial genomics. These range from insufficient genomic data to develop unifying concepts or model organisms for Arctic microbiology to challenges in gaining authentic insights to the structure and function of low-biomass microbiota and integration of data on the causes and consequences of microbial feedbacks across scales. We contend that our insights to date on the genomics of Arctic microbes are limited in these key areas, and we identify priorities and new ways of working to help ensure microbial genomics is in the vanguard of the scientific response to the Arctic crisis.


Assuntos
Genômica/métodos , Microbiota , Pergelissolo/microbiologia , Regiões Árticas , Evolução Molecular , Aquecimento Global , Microbiologia do Solo
15.
ISME J ; 14(2): 597-608, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31712737

RESUMO

Ribosomes are essential to cellular life and the genes for their RNA components are the most conserved and transcribed genes in bacteria and archaea. Ribosomal RNA genes are typically organized into a single operon, an arrangement thought to facilitate gene regulation. In reality, some bacteria and archaea do not share this canonical rRNA arrangement-their 16S and 23S rRNA genes are separated across the genome and referred to as "unlinked". This rearrangement has previously been treated as an anomaly or a byproduct of genome degradation in intracellular bacteria. Here, we leverage complete genome and long-read metagenomic data to show that unlinked 16S and 23S rRNA genes are more common than previously thought. Unlinked rRNA genes occur in many phyla, most significantly within Deinococcus-Thermus, Chloroflexi, and Planctomycetes, and occur in differential frequencies across natural environments. We found that up to 41% of rRNA genes in soil were unlinked, in contrast to the human gut, where all sequenced rRNA genes were linked. The frequency of unlinked rRNA genes may reflect meaningful life history traits, as they tend to be associated with a mix of slow-growing free-living species and intracellular species. We speculate that unlinked rRNA genes may confer selective advantages in some environments, though the specific nature of these advantages remains undetermined and worthy of further investigation. More generally, the prevalence of unlinked rRNA genes in poorly-studied taxa serves as a reminder that paradigms derived from model organisms do not necessarily extend to the broader diversity of bacteria and archaea.


Assuntos
Archaea/genética , Bactérias/genética , Óperon de RNAr/genética , Microbiologia Ambiental , Microbioma Gastrointestinal , Genes de RNAr , Humanos , Metagenômica , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 23S
16.
FEMS Microbiol Ecol ; 95(12)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31697309

RESUMO

Greenland's Dark Zone is the largest contiguous region of bare terrestrial ice in the Northern Hemisphere and microbial processes play an important role in driving its darkening and thereby amplifying melt and runoff from the ice sheet. However, the dynamics of these microbiota have not been fully identified. Here, we present joint 16S rRNA gene and 16S rRNA (cDNA) comparison of input (snow), storage (cryoconite) and output (supraglacial stream water) habitats across the Dark Zone over the melt season. We reveal that all three Dark Zone communities have a preponderance of rare taxa exhibiting high protein synthesis potential (PSP). Furthermore, taxa with high PSP represent highly connected 'bottlenecks' within community structure, consistent with their roles as metabolic hubs. Finally, low abundance-high PSP taxa affiliated with Methylobacterium within snow and stream water suggest a novel role for Methylobacterium in the carbon cycle of Greenlandic snowpacks, and importantly, the export of potentially active methylotrophs to the bed of the Greenland Ice Sheet. By comparing the dynamics of bulk and potentially active microbiota in the Dark Zone of the Greenland Ice Sheet, we provide novel insights into the mechanisms and impacts of the microbial colonization of this critical region of our melting planet.


Assuntos
Ciclo do Carbono/fisiologia , Camada de Gelo/microbiologia , Methylobacterium/fisiologia , Neve/microbiologia , Ecossistema , Congelamento , Groenlândia , Microbiota/fisiologia , RNA Ribossômico 16S/genética , Estações do Ano
17.
Genes (Basel) ; 10(11)2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703372

RESUMO

Microbial communities in remote locations remain under-studied. This is particularly true on glaciers and icecaps, which cover approximately 11% of the Earth's surface. The principal reason for this is the inaccessibility of most of these areas due to their extreme isolation and challenging environmental conditions. While remote research stations have significantly lowered the barrier to studying the microbial communities on icecaps, their use has led to a bias for data collection in the near vicinity of these institutions. Here, miniaturisation of a DNA sequencing lab suitable for off-grid metagenomic studies is demonstrated. Using human power alone, this lab was transported across Europe's largest ice cap (Vatnajökull, Iceland) by ski and sledge. After 11 days of unsupported polar-style travel, a metagenomic study of a geothermal hot spring gorge was conducted on the remote northern edge of the ice cap. This tent-based metagenomic study resulted in over 24 h of Nanopore sequencing, powered by solar power alone. This study demonstrates the ability to conduct DNA sequencing in remote locations, far from civilised resources (mechanised transport, external power supply, internet connection, etc.), whilst greatly reducing the time from sample collection to data acquisition.


Assuntos
Expedições , Camada de Gelo/microbiologia , Metagenoma , Metagenômica/métodos , Microbiota , Sequenciamento por Nanoporos/métodos , Energia Solar , Fontes de Energia Elétrica , Islândia , Metagenômica/instrumentação , Sequenciamento por Nanoporos/instrumentação
18.
FEMS Microbiol Ecol ; 95(10)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504446

RESUMO

Waters draining from flooded and abandoned coal mines in the South Wales Coalfield (SWC) are substantial sources of pollution to the environment characterized by circumneutral pH and elevated dissolved iron concentrations (>1 mg L-1). The discharged Fe precipitates to form Fe(III) (oxyhydr)oxides which sustain microbial communities. However, while several studies have investigated the geochemistry of mine drainage in the SWC, less is known about the microbial ecology of the sites presenting a gap in our understanding of biogeochemical cycling and pollutant turnover. This study investigated the biogeochemistry of the Ynysarwed mine adit in the SWC. Samples were collected from nine locations within sediment at the mine entrance from the upper and lower layers three times over one year for geochemical and bacterial 16S rRNA gene sequence analysis. During winter, members of the Betaproteobacteria bloomed in relative abundance (>40%) including the microaerophilic Fe(II)-oxidizing genus Gallionella. A concomitant decrease in Chlorobi-associated bacteria occurred, although by summer the community composition resembled that observed in the previous autumn. Here, we provide the first insights into the microbial ecology and seasonal dynamics of bacterial communities of Fe(III)-rich deposits in the SWC and demonstrate that neutrophilic Fe(II)-oxidizing bacteria are important and dynamic members of these communities.


Assuntos
Betaproteobacteria/metabolismo , Chlorobi/metabolismo , Compostos Ferrosos/metabolismo , Sedimentos Geológicos/microbiologia , Ferro/metabolismo , Betaproteobacteria/classificação , Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , Chlorobi/genética , Chlorobi/isolamento & purificação , Carvão Mineral/análise , Minas de Carvão , Poluição Ambiental , Oxirredução , RNA Ribossômico 16S/genética , Estações do Ano
19.
Front Microbiol ; 10: 524, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019491

RESUMO

"Glacier algae" grow on melting glacier and ice sheet surfaces across the cryosphere, causing the ice to absorb more solar energy and consequently melt faster, while also turning over carbon and nutrients. This makes glacier algal assemblages, which are typically dominated by just three main species, a potentially important yet under-researched component of the global biosphere, carbon, and water cycles. This review synthesizes current knowledge on glacier algae phylogenetics, physiology, and ecology. We discuss their significance for the evolution of early land plants and highlight their impacts on the physical and chemical supraglacial environment including their role as drivers of positive feedbacks to climate warming, thereby demonstrating their influence on Earth's past and future. Four complementary research priorities are identified, which will facilitate broad advances in glacier algae research, including establishment of reliable culture collections, sequencing of glacier algae genomes, development of diagnostic biosignatures for remote sensing, and improved predictive modeling of glacier algae biological-albedo effects.

20.
Water Sci Technol ; 78(1-2): 432-440, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30101778

RESUMO

Freshwater quality detection is important for pollution control. Three important components of water quality are pH, ammonia and dissolved H2S and there is an urgent need for a high-precision sensor for simultaneous and continuous measurement. In this study, all-solid-state electrodes of Eh, pH, NH4 + and S2- were manufactured and mounted to a wireless chemical sensor with multiple parameters. Calibration indicated that the pH electrode had a Nernst response with slope of 53.174 mV; the NH4 + electrode had a detection limit of 10-5 mol/L (Nernst response slope of 53.56 mV between 10-1 to 10-4 mol/L). Ag/Ag2S has a detection limit of 10-7 mol/L (Nernst response slope of 28.439 mV). The sensor was cylindrical and small with low power consumption and low storage demand to achieve continuous in-situ monitoring for long periods. The sensor was tested for 10 days in streams at Trawsgoed Dairy farm in Aberystwyth, UK. At the intensively farmed Trawsgoed, the concentration of NH4 + in the stream rose sharply after the application of slurry to adjacent fields. Further, the stream was overhung with extensive vegetation and exhibited changes in pH, which correlated with photosynthetic activity. Measurements of S2- were stable throughout the week. Our data demonstrate the applicability of our multiple electrode sensor.


Assuntos
Monitoramento Ambiental/métodos , Água Doce/análise , Água Doce/química , Poluentes Químicos da Água/análise , Amônia/análise , Eletrodos , Sulfeto de Hidrogênio/análise , Limite de Detecção , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA