Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 5632, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177493

RESUMO

We introduce Digital microfluidic Isolation of Single Cells for -Omics (DISCO), a platform that allows users to select particular cells of interest from a limited initial sample size and connects single-cell sequencing data to their immunofluorescence-based phenotypes. Specifically, DISCO combines digital microfluidics, laser cell lysis, and artificial intelligence-driven image processing to collect the contents of single cells from heterogeneous populations, followed by analysis of single-cell genomes and transcriptomes by next-generation sequencing, and proteomes by nanoflow liquid chromatography and tandem mass spectrometry. The results described herein confirm the utility of DISCO for sequencing at levels that are equivalent to or enhanced relative to the state of the art, capable of identifying features at the level of single nucleotide variations. The unique levels of selectivity, context, and accountability of DISCO suggest potential utility for deep analysis of any rare cell population with contextual dependencies.


Assuntos
Separação Celular/instrumentação , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Animais , Antígeno CD47/genética , Linhagem Celular Tumoral , Separação Celular/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Perfilação da Expressão Gênica/instrumentação , Perfilação da Expressão Gênica/métodos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Dispositivos Lab-On-A-Chip , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Redes Neurais de Computação , Proteômica/métodos
2.
Sci Rep ; 9(1): 17504, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31745197

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 9(1): 11475, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391493

RESUMO

The Oxford MinION, the first commercial nanopore sequencer, is also the first to implement molecule-by-molecule real-time selective sequencing or "Read Until". As DNA transits a MinION nanopore, real-time pore current data can be accessed and analyzed to provide active feedback to that pore. Fragments of interest are sequenced by default, while DNA deemed non-informative is rejected by reversing the pore bias to eject the strand, providing a novel means of background depletion and/or target enrichment. In contrast to the previously published pattern-matching Read Until approach, our RUBRIC method is the first example of real-time selective sequencing where on-line basecalling enables alignment against conventional nucleic acid references to provide the basis for sequence/reject decisions. We evaluate RUBRIC performance across a range of optimizable parameters, apply it to mixed human/bacteria and CRISPR/Cas9-cut samples, and present a generalized model for estimating real-time selection performance as a function of sample composition and computing configuration.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Modelos Genéticos , Análise de Sequência de DNA/métodos , Bacteriófago lambda/genética , Sistemas CRISPR-Cas/genética , DNA Bacteriano/genética , DNA Viral/genética , Escherichia coli/genética , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Humanos , Nanoporos , Estudo de Prova de Conceito , Análise de Sequência de DNA/instrumentação
4.
J Chromatogr A ; 1586: 139-144, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30528768

RESUMO

In ultralow Pu analyses, the gold standard is thermal ionization mass spectrometry (TIMS), which requires pure sources to achieve its performance. This purity is achieved through step-wise purifications. In this work single, anion-exchange beads were trapped in the tubing to allow for dynamic solution cycling over the surface of the beads to improve the rates of metal complex uptake. Rates of Pu sorption on single ∼900 µm SIR-1200 and ∼620 µm Reillex-HPQ beads were determined for single beads trapped in a tube with syringe pump driven dynamic solution cycling over the bead, improving sorption and desorption rates. A static control was used as a comparison. Using 238Pu to enable facile activity-based measurements, rates were determined by measuring the residual Pu after contact with beads using liquid scintillation analysis (LSA) for fixed periods of time. Syringe pump driven dynamic solution cycling results in ∼5 and ∼15-fold improvements in the sorption rates for SIR-1200 and Reillex-HPQ. Impacts on desorption were also examined.


Assuntos
Espectrometria de Massas/métodos , Plutônio/análise , Plutônio/química , Resinas Sintéticas/química , Contagem de Cintilação/instrumentação
5.
Sci Rep ; 8(1): 3159, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29453452

RESUMO

Emerging sequencing technologies are allowing us to characterize environmental, clinical and laboratory samples with increasing speed and detail, including real-time analysis and interpretation of data. One example of this is being able to rapidly and accurately detect a wide range of pathogenic organisms, both in the clinic and the field. Genomes can have radically different GC content however, such that accurate sequence analysis can be challenging depending upon the technology used. Here, we have characterized the performance of the Oxford MinION nanopore sequencer for detection and evaluation of organisms with a range of genomic nucleotide bias. We have diagnosed the quality of base-calling across individual reads and discovered that the position within the read affects base-calling and quality scores. Finally, we have evaluated the performance of the current state-of-the-art neural network-based MinION basecaller, characterizing its behavior with respect to systemic errors as well as context- and sequence-specific errors. Overall, we present a detailed characterization the capabilities of the MinION in terms of generating high-accuracy sequence data from genomes with a wide range of nucleotide content. This study provides a framework for designing the appropriate experiments that are the likely to lead to accurate and rapid field-forward diagnostics.


Assuntos
Nanoporos , Nucleotídeos/genética , Análise de Sequência de DNA/métodos , Algoritmos , Genômica , Processos Estocásticos
6.
PLoS One ; 10(3): e0118182, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826708

RESUMO

Advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology (e.g., aliquoting, centrifuging, mixing, and thermal cycling) to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC), a novel wheel-based device capable of cycling up to four different fixed-temperature blocks into contact with a stationary 4-microliter capillary-bound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR) system that uses low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between-run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, we present preliminary results for rapid single-plex PCR, multiplex short tandem repeat (STR) amplification, and second strand cDNA synthesis.


Assuntos
Automação Laboratorial , Reação em Cadeia da Polimerase/métodos , Humanos , Reação em Cadeia da Polimerase/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA