Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Anal Chem ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717298

RESUMO

Combinatorial electrochemistry has great promise for accelerated reaction screening, organic synthesis, and catalysis. Recently, we described a new high-throughput electrochemistry platform, colloquially named "Legion". Legion fits the footprint of a 96-well microtiter plate with simultaneous individual control over all 96 electrochemical cells. Here, we demonstrate the versatility of Legion when coupled with high-throughput mass spectrometry (MS) for electrosynthetic product screening and quantitation. Electrosynthesis of benzophenone azine was selected as a model reaction and was arrayed and optimized using a combination of Legion and nanoelectrospray ionization MS. The combination of high-throughput synthesis with Legion and analysis via MS proves a compelling strategy for accelerating reaction discovery and optimization in electro-organic synthesis.

2.
Anal Chem ; 95(50): 18557-18563, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38050376

RESUMO

Lipids are important biomarkers within the field of disease diagnostics and can serve as indicators of disease progression and predictors of treatment effectiveness. Although lipids can provide important insight into how diseases initiate and progress, mass spectrometric methods for lipid characterization and profiling are limited due to lipid structural diversity, particularly the presence of various lipid isomers. Moreover, the difficulty of handling small-volume samples exacerbates the intricacies of biological analyses. In this work, we have developed a strategy that electromigrates a thin film of a small-volume biological sample directly to the air-liquid interface formed at the tip of a theta capillary. Importantly, we seamlessly integrated in situ biological lipid extraction with accelerated chemical derivatization, enabled by the air-liquid interface, and conducted isomeric structural characterization within a unified platform utilizing theta capillary nanoelectrospray ionization mass spectrometry, all tailored for small-volume sample analysis. We applied this unified platform to the analysis of lipids from small-volume human plasma and Alzheimer's disease mouse serum samples. Accelerated electro-epoxidation of unsaturated lipids at the interface allowed us to characterize lipid double-bond positional isomers. The unique application of electromigration of a thin film to the air-liquid interface in combination with accelerated interfacial reactions holds great potential in small-volume sample analysis for disease diagnosis and prevention.


Assuntos
Lipídeos , Espectrometria de Massas por Ionização por Electrospray , Camundongos , Humanos , Animais , Espectrometria de Massas , Isomerismo , Lipídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos
3.
J Am Soc Mass Spectrom ; 34(9): 1998-2005, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37523498

RESUMO

Characterization of nonpolar lipids is crucial due to their essential biological functions and ability to exist in various isomeric forms. In this study, we introduce the N-H aziridination method to target carbon-carbon double bonds (C═C bonds) in nonpolar sterol lipids. The resulting fragments are readily dissociated upon collision-induced dissociation, generating specific fragment ions for C═C bond position determination and fingerprint fragments for backbone characterization. This method significantly enhances lipid ionization efficiency, thereby improving the sensitivity and accuracy of nonpolar lipid analysis. We demonstrated that aziridination of sterols leads to distinctive fragmentation pathways for chain and ring C═C bonds, enabling the identification of sterol isomers such as desmosterol and 7-dehydrocholesterol. Furthermore, aziridination can assist in identifying the sterol backbone by providing fingerprint tandem mass spectra. We also demonstrated the quantitative capacity of this approach with a limit of detection of 10 nM in the solvent mixture of methanol and water. To test the feasibility of this method in complex biological samples, we used mouse prostate cancerous tissues and found significant differences in nonpolar lipid profiles between healthy and cancerous samples. The high efficiency and specificity of aziridination-assisted mass spectrometric analysis, as well as its quantitative analysis ability, make it highly suitable for broad applications in nonpolar lipid research.


Assuntos
Fitosteróis , Esteróis , Masculino , Camundongos , Animais , Isomerismo , Espectrometria de Massas em Tandem/métodos , Carbono , Espectrometria de Massas por Ionização por Electrospray/métodos
4.
J Am Chem Soc ; 145(30): 16862-16871, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37471618

RESUMO

Despite the versatility of semiconductor nanocrystals (NCs) in photoinduced chemical processes, the generation of stable radicals has been more challenging due to reverse charge transfer or charge recombination even in the presence of sacrificial charge acceptors. Here, we show that cesium lead halide (CsPbX3) NCs can selectively photogenerate either aminium or aminyl radicals from amines, taking advantage of the controllable imbalance of the electron and hole populations achieved by varying the solvent composition. Using dihalomethane as the solvent, irreversible removal of the electrons from CsPbX3 NCs enabled by the photoinduced halide exchange between the NCs and the dihalomethane resulted in efficient oxidative generation of the aminium radical. In the absence of dihalomethane in solvent, the availability of both electrons and holes resulted in the production of an aminyl radical via sequential hole transfer and reductive N-H bond dissociation. The negative charge of the halide ions on the NC's lattice surface appears to facilitate the aminyl radical production, competing favorably with the reversible charge transfer reverting to the reactant.

5.
Anal Bioanal Chem ; 415(18): 4197-4208, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37017722

RESUMO

In this work, we present an in situ droplet-based derivatization method for fast tissue lipid profiling at multiple isomer levels. On-tissue derivatization for isomer characterization was achieved in a droplet delivered by the TriVersa NanoMate LESA pipette. The derivatized lipids were then extracted and analyzed by the automated chip-based liquid extraction surface analysis (LESA) mass spectrometry (MS) followed by tandem MS to produce diagnostic fragment ions to reveal the lipid isomer structures. Three reactions, i.e., mCPBA epoxidation, photocycloaddition catalyzed by the photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6, and Mn(II) lipid adduction, were applied using the droplet-based derivatization to provide lipid characterization at carbon-carbon double-bond positional isomer and sn-positional isomer levels. Relative quantitation of both types of lipid isomers was also achieved based on diagnostic ion intensities. This method provides the flexibility of performing multiple derivatizations at different spots in the same functional region of an organ for orthogonal lipid isomer analysis using a single tissue slide. Lipid isomers were profiled in the cortex, cerebellum, thalamus, hippocampus, and midbrain of the mouse brain and 24 double-bond positional isomers and 16 sn-positional isomers showed various distributions in those regions. This droplet-based derivatization of tissue lipids allows fast profiling of multi-level isomer identification and quantitation and has great potential in tissue lipid studies requiring rapid sample-to-result turnovers.


Assuntos
Lipídeos , Espectrometria de Massas em Tandem , Camundongos , Animais , Espectrometria de Massas em Tandem/métodos , Isomerismo
6.
Angew Chem Int Ed Engl ; 61(39): e202207098, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35932470

RESUMO

Knowing concentrations of lipids is essential for understanding their physiological functions and discovering new disease biomarkers. However, it is highly challenging to accurately quantify lipids due to structural diversity and multiple isomeric forms of lipids. To address these critical gaps, we have developed a novel aziridine-based isobaric tag labelling strategy that allows (i) determination of lipid double-bond positional isomers, (ii) accurate relative quantification of unsaturated lipids, and (iii) improvement of ionization efficiencies of nonpolar lipids. The power of this method is demonstrated in characterization and quantification of various categories of lipids such as fatty acids, phosphoglycerol lipids, cholesteryl esters (CE), and glycerides. 17 CE lipid isomers were identified and quantified simultaneously from Alzheimer's disease (AD) mouse serum without using lipid standards. Among them, 6 CE isomers showed significant changes in concentrations in AD serum.


Assuntos
Aziridinas , Ésteres do Colesterol , Animais , Biomarcadores , Ácidos Graxos , Glicerídeos , Isomerismo , Camundongos
7.
J Happiness Stud ; 23(7): 3463-3483, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35855779

RESUMO

Researchers have emphasized the detrimental effects of COVID-19 on mental health, but less attention has been given to personal strengths promoting resilience during the pandemic. One strength might be gratitude, which supports wellbeing amidst adversity. A two-wave examination of 201 college students revealed anxiety symptom severity increased to a lesser extent from pre-COVID (January-March 2020) to onset-COVID (April 2020) among those who reported greater pre-COVID gratitude. A similar trend appeared for depression symptom severity. Gratitude was also correlated with less negative changes in outlook, greater positive changes in outlook, and endorsement of positive experiences resulting from COVID-19. Thematic analysis showed "strengthened interpersonal connections" and "more time" were the most commonly reported positive experiences. Overall findings suggest gratitude lessened mental health difficulties and fostered positivity at the onset of the pandemic, but more research is needed to determine whether gratitude and other strengths promote resilience as COVID-19 continues.

8.
Biochemistry ; 61(12): 1199-1212, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35653700

RESUMO

The fragile X proteins (FXPs) are a family of RNA-binding proteins that regulate mRNA translation to promote proper neural development and cognition in mammals. Of particular interest to researchers is the fragile X mental retardation protein (FMRP), as its absence leads to a neurodevelopmental disorder: fragile X syndrome (FXS), the leading monogenetic cause of autism spectrum disorders. A primary focus of research has been to determine mRNA targets of the FXPs in vivo through pull-down techniques, and to validate them through in vitro binding studies; another approach has been to perform in vitro selection experiments to identify RNA sequence and structural targets. These mRNA targets can be further investigated as potential targets for FXS therapeutics. The most established RNA structural target of this family of proteins is the G-quadruplex. In this article, we report a 99 nucleotide RNA target that is bound by all three FXPs with nanomolar equilibrium constants. Furthermore, we determined that the last 102 amino acids of FMRP, which includes the RGG motif, were necessary and sufficient to bind this RNA target. To the best of our knowledge, this is one of only a few examples of non-G-quadruplex, non-homopolymer RNAs bound by the RGG motif/C-termini of FMRP.


Assuntos
Síndrome do Cromossomo X Frágil , Quadruplex G , Animais , Proteína do X Frágil da Deficiência Intelectual/química , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Mamíferos/metabolismo , Biossíntese de Proteínas , RNA/metabolismo , RNA Mensageiro/metabolismo
9.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1201-1202: 123290, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35588643

RESUMO

Thousands of chemical compounds produced by industry are dispersed in the human environment widely enough to reach the world population, and the introduction of new chemicals constantly occurs. As new synthetic molecules emerge, rapid analytical workflows for screening possible presence of exogenous compounds in biofluids can be useful as a first pass analysis to detect chemical exposure and guide the development and application of more elaborate LC-MS/MS methods for quantification. In this study, a suspect screening workflow using the multiple reaction monitoring (MRM) profiling method is proposed as a first pass exploratory technique to survey selected exogenous molecules in human urine samples. The workflow was applied to investigate 12 human urine samples using 310 MRMs related to the chemical functionalities of 87 exogenous compounds present in the METLIN database and reported in the literature. A total of 11 MRMs associated with five different compounds were detected in the samples. Product ion scans for the precursor ions of the selected MRMs were acquired as a further identification step for these chemicals. The suspect screening results suggested the presence of five exogenous compounds in the human urine samples analyzed, namely metformin, metoprolol, acetaminophen, paraxanthine and acrylamide. LC-MS/MS was applied as a last step to confirm these results, and the presence of four out of the five targets selected by MRM profiling were corroborated, indicating that this workflow can support the selection of suspect compounds to screen complex samples and guide more time-consuming and specific quantification analyses.


Assuntos
Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Bases de Dados Factuais , Humanos , Espectrometria de Massas em Tandem/métodos , Fluxo de Trabalho
10.
J Am Chem Soc ; 144(3): 1306-1312, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35015550

RESUMO

Development of new transition-metal-catalyzed electrochemistry promises to improve overall synthetic efficiency. Here, we describe the first integrated platform for online screening of electrochemical transition-metal catalysis. It utilizes the intrinsic electrochemical capabilities of nanoelectrospray ionization mass spectrometry (nano-ESI-MS) and picomole-scale anodic corrosion of a Pd electrode to generate and evaluate highly efficient cationic catalysts for mild electrocatalysis. We demonstrate the power of the novel electrocatalysis platform by (1) identifying electrolytic Pd-catalyzed Suzuki coupling at room temperature, (2) discovering Pd-catalyzed electrochemical C-H arylation in the absence of external oxidant or additive, (3) developing electrolyzed Suzuki coupling/C-H arylation cascades, and (4) achieving late-stage functionalization of two drug molecules by the newly developed mild electrocatalytic C-H arylation. More importantly, the scale-up reactions confirm that new electrochemical pathways discovered by nano-ESI can be implemented under the conventional electrolytic reaction conditions. This approach enables in situ mechanistic studies by capturing various intermediates including transient transition metal species by MS, and thus uncovering the critical role of anodically generated cationic Pd catalyst in promoting otherwise sluggish transmetalation in C-H arylation. The anodically generated cationic Pd with superior catalytic efficiency and novel online electrochemical screening platform hold great potential for discovering mild transition-metal-catalyzed reactions.

11.
Psychol Women Q ; 46(3): 299-315, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37637076

RESUMO

Social support after sexual assault is important for recovery, but violence and recovery may also challenge relationships. We examined functional and structural social support changes following sexual assault and their association with mental health. College women (N=544) with and without a sexual assault history completed a cross-sectional survey assessing current and past egocentric social networks. Functional support (perceived global support, assault disclosure, perceived helpfulness of responses) and structural support (network density, size, retention) were examined. Multilevel models revealed that, relative to non-survivors, survivors reported smaller, less dense past networks, but similarly sized current networks. Survivors retained less of their networks than non-survivors, and network members who provided unhelpful responses to disclosure were less likely to be retained. Structural equation modeling revealed that, among survivors, perceived unhelpful responses to disclosure and a greater loss of network members were associated with worse mental health. Findings suggest that survivors may experience a restructuring of social networks following sexual assault, especially when network members respond in unhelpful ways to disclosure. Although survivors appeared to build new relationships, this restructuring was associated with more mental health problems. It is possible that interventions to improve post-assault social network retention may facilitate recovery.

12.
Chembiochem ; 23(5): e202100624, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34936727

RESUMO

All cells use organized lipid compartments to facilitate specific biological functions. Membrane-bound organelles create defined spatial environments that favor unique chemical reactions while isolating incompatible biological processes. Despite the fundamental role of cellular organelles, there is a scarcity of methods for preparing functional artificial lipid-based compartments. Here, we demonstrate a robust bioconjugation system for sequestering proteins into zwitterionic lipid sponge phase droplets. Incorporation of benzylguanine (BG)-modified phospholipids that form stable covalent linkages with an O6 -methylguanine DNA methyltransferase (SNAP-tag) fusion protein enables programmable control of protein capture. We show that this methodology can be used to anchor hydrophilic proteins at the lipid-aqueous interface, concentrating them within an accessible but protected chemical environment. SNAP-tag technology enables the integration of proteins that regulate complex biological functions in lipid sponge phase droplets, and should facilitate the development of advanced lipid-based artificial organelles.


Assuntos
Gotículas Lipídicas , O(6)-Metilguanina-DNA Metiltransferase , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Fosfolipídeos , Proteínas
13.
J Mol Biol ; 434(2): 167396, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34896112

RESUMO

Fragile X Syndrome, as well as some manifestations of autism spectrum disorder, results from improper RNA regulation due to a deficiency of fragile X mental retardation protein (FMRP). FMRP and its autosomal paralogs, fragile X related proteins 1 & 2 (FXR1P/2P), have been implicated in many aspects of RNA regulation, from protein synthesis to mRNA stability and decay. The literature on the fragile X related proteins' (FXPs) role in mRNA regulation and their potential mRNA targets is vast. Therefore, we developed an approach to investigate the function of FXPs in translational control using three potential mRNA targets. Briefly, we first selected top mRNA candidates found to be associated with the FXPs and whose translation are influenced by one or more of the FXPs. We then narrowed down the FXPs' binding site(s) within the mRNA, analyzed the strength of this binding in vitro, and determined how each FXP affects the translation of a minimal reporter mRNA with the binding site. Overall, all FXPs bound with high affinity to RNAs containing G-quadruplexes, such as Cyclin Dependent Kinase Inhibitor p21 and FMRP's own coding region. Interestingly, FMRP inhibited the translation of each mRNA distinctly and in a manner that appears to correlate with its binding to each mRNA. In contrast, FXR1P/2P inhibited all mRNAs tested. Finally, although binding of our RNAs was due to the RGG (arginine-glycine-glycine) motif-containing C-terminal region of the FXPs, this region was not sufficient to cause inhibition of translation.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Quadruplex G , RNA Mensageiro/genética , Transtorno do Espectro Autista , Sítios de Ligação , Humanos , Ligação Proteica , Domínios Proteicos , RNA/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
14.
Pharm Res ; 38(10): 1677-1695, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34671921

RESUMO

PURPOSE: We developed an accessible method for labeling small extracellular vesicles (sEVs) without disrupting endogenous ligands. Using labeled sEVs administered to conscious rats, we developed a multiple compartment pharmacokinetic model to identify potential differences in the disposition of sEVs from three different cell types. METHODS: Crude sEVs were labeled with a non-homologous oligonucleotide and isolated from cell culture media using a commercial reagent. Jugular vein catheters were used to introduce EVs to conscious rats (n = 30) and to collect blood samples. Digital PCR was leveraged to allow for quantification over a wide dynamic range. Non-linear mixed effects analysis with first order conditional estimation - extended least squares (FOCE ELS) was used to estimate population-level parameters with associated intra-animal variability. RESULTS: 86.5% ± 1.5% (mean ± S.E.) of EV particles were in the 45-195 nm size range and demonstrated protein and lipid markers of endosomal origin. Incorporated oligonucleotide was stable in blood and detectable over five half-lives. Data were best described by a three-compartment model with one elimination from the central compartment. We performed an observation-based simulated posterior predictive evaluation with prediction-corrected visual predictive check. Covariate and bootstrap analyses identified cell type having an influence on peripheral volumes (V2 and V3) and clearance (Cl3). CONCLUSIONS: Our method relies upon established laboratory techniques, can be tailored to a variety of biological questions regarding the pharmacokinetic disposition of extracellular vesicles, and will provide a complementary approach for the of study EV ligand-receptor interactions in the context of EV uptake and targeted therapeutics.


Assuntos
Vesículas Extracelulares/metabolismo , Nanopartículas/metabolismo , Oligonucleotídeos/farmacocinética , Animais , Sequência de Bases , Transporte Biológico , Caenorhabditis elegans/genética , Humanos , Ligantes , Lipídeos/química , Masculino , MicroRNAs , Modelos Biológicos , Oligonucleotídeos/metabolismo , Ratos Sprague-Dawley , Imagem Individual de Molécula
15.
J Mass Spectrom ; 56(1): e4681, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33210411

RESUMO

Extracellular vesicles (EVs) convey information used in cell-to-cell interactions. Lipid analysis of EVs remains challenging because of small sample amounts available. Lipid discovery using traditional mass spectrometry platforms based on liquid chromatography and high mass resolution typically employs milligram sample amounts. We report a simple workflow for lipid profiling of EVs based on multiple reaction monitoring (MRM) profiling that uses microgram amounts of sample. After liquid-liquid extraction, individual EV samples were injected directly into the electrospray ionization (ESI) ion source at low flow rates (10 µl/min) and screened for 197 MRM transitions chosen to be a characteristic of several classes of lipids. This choice was based on a discovery experiment, which applied 1,419 MRMs associated with multiple lipid classes to a representative pooled sample. EVs isolated from 12 samples of human lymphocytes and 16 replicates from six different rat cells lines contained an estimated amount of total lipids of 326 to 805 µg. Samples showed profiles that included phosphatidylcholine (PC), sphingomyelin (SM), cholesteryl ester (CE), and ceramide (Cer) lipids, as well as acylcarnitines. The lipid profiles of human lymphocyte EVs were distinguishable using principal component and cluster analysis in terms of prior antibody and drug exposure. Lipid profiles of rat cell lines EV's were distinguishable by their tissue of origin.


Assuntos
Vesículas Extracelulares/química , Lipídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Humanos , Lipídeos/química , Extração Líquido-Líquido , Linfócitos/química , Linfócitos/citologia , Análise de Componente Principal , Ratos
16.
Sci Rep ; 10(1): 15858, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985615

RESUMO

The fragile X protein family consists of three RNA-binding proteins involved in translational regulation. Fragile X mental retardation protein (FMRP) is well-studied, as its loss leads to fragile X syndrome, a neurodevelopmental disorder which is the most prevalent form of inherited mental retardation and the primary monogenetic cause of autism. Fragile X related proteins 1 and 2 (FXR1P and FXR2P) are autosomal paralogs of FMRP that are involved in promoting muscle development and neural development, respectively. There is great interest in studying this family of proteins, yet researchers have faced much difficulty in expressing and purifying the full-length versions of these proteins in sufficient quantities. We have developed a simple, rapid, and inexpensive procedure that allows for the recombinant expression and purification of full-length human FMRP, FXR1P, and FXR2P from Escherichia coli in high yields, free of protein and nucleic acid contamination. In order to assess the proteins' function after purification, we confirmed their binding to pseudoknot and G-quadruplex forming RNAs as well as their ability to regulate translation in vitro.


Assuntos
Escherichia coli/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/isolamento & purificação , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Expressão Gênica , Humanos , RNA/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA