RESUMO
Genomic imprinting involves differential DNA methylation and gene expression between homologous paternal and maternal loci. It remains unclear, however, whether DNA replication also shows parent-of-origin-specific patterns at imprinted or other genomic regions. Here, we investigate genome-wide asynchronous DNA replication utilizing uniparental human embryonic stem cells containing either maternal-only (parthenogenetic) or paternal-only (androgenetic) DNA. Four clusters of imprinted genes exhibited differential replication timing based on parent of origin, while the remainder of the genome, 99.82%, showed no significant replication asynchrony between parental origins. Active alleles in imprinted gene clusters replicated earlier than their inactive counterparts. At the Prader-Willi syndrome locus, replication asynchrony spanned virtually the entirety of S phase. Replication asynchrony was carried through differentiation to neuronal precursor cells in a manner consistent with gene expression. This study establishes asynchronous DNA replication as a hallmark of large imprinted gene clusters.
Assuntos
Período de Replicação do DNA , Impressão Genômica , Humanos , Metilação de DNA/genética , Diferenciação Celular/genética , Replicação do DNA/genética , Células-Tronco Embrionárias Humanas/metabolismo , Família Multigênica , Síndrome de Prader-Willi/genética , AlelosRESUMO
Induced pluripotent stem cells (iPSCs) are the foundation of cell therapy. Differences in gene expression, DNA methylation, and chromatin conformation, which could affect differentiation capacity, have been identified between iPSCs and embryonic stem cells (ESCs). Less is known about whether DNA replication timing, a process linked to both genome regulation and genome stability, is efficiently reprogrammed to the embryonic state. To answer this, we compare genome-wide replication timing between ESCs, iPSCs, and cells reprogrammed by somatic cell nuclear transfer (NT-ESCs). While NT-ESCs replicate their DNA in a manner indistinguishable from ESCs, a subset of iPSCs exhibits delayed replication at heterochromatic regions containing genes downregulated in iPSCs with incompletely reprogrammed DNA methylation. DNA replication delays are not the result of gene expression or DNA methylation aberrations and persist after cells differentiate to neuronal precursors. Thus, DNA replication timing can be resistant to reprogramming and influence the quality of iPSCs.
Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes Induzidas/metabolismo , Reprogramação Celular/genética , Período de Replicação do DNA , Diferenciação Celular , Metilação de DNA/genéticaRESUMO
Induced pluripotent stem cells (iPSC) are a widely used cell system and a foundation for cell therapy. Differences in gene expression, DNA methylation, and chromatin conformation, which have the potential to affect differentiation capacity, have been identified between iPSCs and embryonic stem cells (ESCs). Less is known about whether DNA replication timing - a process linked to both genome regulation and genome stability - is efficiently reprogrammed to the embryonic state. To answer this, we profiled and compared genome-wide replication timing between ESCs, iPSCs, and cells reprogrammed by somatic cell nuclear transfer (NT-ESCs). While NT-ESCs replicated their DNA in a manner indistinguishable from ESCs, a subset of iPSCs exhibit delayed replication at heterochromatic regions containing genes downregulated in iPSC with incompletely reprogrammed DNA methylation. DNA replication delays were not the result of gene expression and DNA methylation aberrations and persisted after differentiating cells to neuronal precursors. Thus, DNA replication timing can be resistant to reprogramming and lead to undesirable phenotypes in iPSCs, establishing it as an important genomic feature to consider when evaluating iPSC lines.
RESUMO
Fanconi anaemia (FA), a model syndrome of genome instability, is caused by a deficiency in DNA interstrand crosslink repair resulting in chromosome breakage1-3. The FA repair pathway protects against endogenous and exogenous carcinogenic aldehydes4-7. Individuals with FA are hundreds to thousands fold more likely to develop head and neck (HNSCC), oesophageal and anogenital squamous cell carcinomas8 (SCCs). Molecular studies of SCCs from individuals with FA (FA SCCs) are limited, and it is unclear how FA SCCs relate to sporadic HNSCCs primarily driven by tobacco and alcohol exposure or infection with human papillomavirus9 (HPV). Here, by sequencing genomes and exomes of FA SCCs, we demonstrate that the primary genomic signature of FA repair deficiency is the presence of high numbers of structural variants. Structural variants are enriched for small deletions, unbalanced translocations and fold-back inversions, and are often connected, thereby forming complex rearrangements. They arise in the context of TP53 loss, but not in the context of HPV infection, and lead to somatic copy-number alterations of HNSCC driver genes. We further show that FA pathway deficiency may lead to epithelial-to-mesenchymal transition and enhanced keratinocyte-intrinsic inflammatory signalling, which would contribute to the aggressive nature of FA SCCs. We propose that the genomic instability in sporadic HPV-negative HNSCC may arise as a result of the FA repair pathway being overwhelmed by DNA interstrand crosslink damage caused by alcohol and tobacco-derived aldehydes, making FA SCC a powerful model to study tumorigenesis resulting from DNA-crosslinking damage.
Assuntos
Reparo do DNA , Anemia de Fanconi , Genômica , Neoplasias de Cabeça e Pescoço , Humanos , Aldeídos/efeitos adversos , Aldeídos/metabolismo , Reparo do DNA/genética , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patologia , Neoplasias de Cabeça e Pescoço/induzido quimicamente , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Infecções por Papillomavirus , Carcinoma de Células Escamosas de Cabeça e Pescoço/induzido quimicamente , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Dano ao DNA/efeitos dos fármacosRESUMO
Mutations in the SETX gene, which encodes Senataxin, are associated with the progressive neurodegenerative diseases ataxia with oculomotor apraxia 2 (AOA2) and amyotrophic lateral sclerosis 4 (ALS4). To identify the causal defect in AOA2, patient-derived cells and SETX knockouts (human and mouse) were analyzed using integrated genomic and transcriptomic approaches. A genome-wide increase in chromosome instability (gains and losses) within genes and at chromosome fragile sites was observed, resulting in changes to gene-expression profiles. Transcription stress near promoters correlated with high GCskew and the accumulation of R-loops at promoter-proximal regions, which localized with chromosomal regions where gains and losses were observed. In the absence of Senataxin, the Cockayne syndrome protein CSB was required for the recruitment of the transcription-coupled repair endonucleases (XPG and XPF) and RAD52 recombination protein to target and resolve transcription bubbles containing R-loops, leading to genomic instability. These results show that transcription stress is an important contributor to SETX mutation-associated chromosome fragility and AOA2.
Assuntos
Instabilidade Cromossômica/genética , DNA Helicases/metabolismo , Enzimas Multifuncionais/metabolismo , RNA Helicases/metabolismo , Ataxias Espinocerebelares/congênito , Animais , Apraxias/genética , Ataxia/genética , Linhagem Celular , Ataxia Cerebelar/genética , DNA Helicases/genética , Reparo do DNA/genética , Perfilação da Expressão Gênica/métodos , Instabilidade Genômica/genética , Genômica/métodos , Humanos , Camundongos , Células-Tronco Embrionárias Murinas , Enzimas Multifuncionais/genética , Mutação/genética , Doenças Neurodegenerativas/genética , Cultura Primária de Células , Regiões Promotoras Genéticas/genética , RNA Helicases/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/fisiopatologia , Transcriptoma/genéticaRESUMO
In studies of the unicellular eukaryoteDictyostelium discoideum, many have anecdotally observed that cell dilution below a certain 'threshold density' causes cells to undergo a period of slow growth (lag). However, little is documented about the slow growth phase and the reason for different growth dynamics below and above this threshold density. In this paper, we extend and correct our earlier work to report an extensive set of experiments, including the use of new cell counting technology, that set this slow-to-fast growth transition on a much firmer biological basis. We show that dilution below a certain density (around 104cells ml-1) causes cells to grow slower on average and exhibit a large degree of variability: sometimes a sample does not lag at all, while sometimes it takes many moderate density cell cycle times to recover back to fast growth. We perform conditioned media experiments to demonstrate that a chemical signal mediates this endogenous phenomenon. Finally, we argue that while simple models involving fluid transport of signal molecules or cluster-based signaling explain typical behavior, they do not capture the high degree of variability between samples but nevertheless favor an intra-cluster mechanism.
Assuntos
Modelos Biológicos , Transdução de Sinais , Ciclo Celular , Densidade Demográfica , Dinâmica PopulacionalRESUMO
DNA replication follows a strict spatiotemporal program that intersects with chromatin structure but has a poorly understood genetic basis. To systematically identify genetic regulators of replication timing, we exploited inter-individual variation in human pluripotent stem cells from 349 individuals. We show that the human genome's replication program is broadly encoded in DNA and identify 1,617 cis-acting replication timing quantitative trait loci (rtQTLs) - sequence determinants of replication initiation. rtQTLs function individually, or in combinations of proximal and distal regulators, and are enriched at sites of histone H3 trimethylation of lysines 4, 9, and 36 together with histone hyperacetylation. H3 trimethylation marks are individually repressive yet synergistically associate with early replication. We identify pluripotency-related transcription factors and boundary elements as positive and negative regulators of replication timing, respectively. Taken together, human replication timing is controlled by a multi-layered mechanism with dozens of effectors working combinatorially and following principles analogous to transcription regulation.
Assuntos
Período de Replicação do DNA , Genoma Humano , Células-Tronco Pluripotentes/metabolismo , Acetilação , Variação Biológica da População/genética , Metilação de DNA , Conjuntos de Dados como Assunto , Feminino , Regulação da Expressão Gênica , Código das Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Locos de Características Quantitativas , Fatores de Transcrição/metabolismo , Sequenciamento Completo do GenomaRESUMO
Haploid human embryonic stem cells (ESCs) provide a powerful genetic system but diploidize at high rates. We hypothesized that diploidization results from aberrant DNA replication. To test this, we profiled DNA replication timing in isogenic haploid and diploid ESCs. The greatest difference was the earlier replication of the X Chromosome in haploids, consistent with the lack of X-Chromosome inactivation. We also identified 21 autosomal regions that had delayed replication in haploids, extending beyond the normal S phase and into G2/M. Haploid-delays comprised a unique set of quiescent genomic regions that are also underreplicated in polyploid placental cells. The same delays were observed in female ESCs with two active X Chromosomes, suggesting that increased X-Chromosome dosage may cause delayed autosomal replication. We propose that incomplete replication at the onset of mitosis could prevent cell division and result in re-entry into the cell cycle and whole genome duplication.