Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(4): e1011995, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656999

RESUMO

Genomes contain conserved non-coding sequences that perform important biological functions, such as gene regulation. We present a phylogenetic method, PhyloAcc-C, that associates nucleotide substitution rates with changes in a continuous trait of interest. The method takes as input a multiple sequence alignment of conserved elements, continuous trait data observed in extant species, and a background phylogeny and substitution process. Gibbs sampling is used to assign rate categories (background, conserved, accelerated) to lineages and explore whether the assigned rate categories are associated with increases or decreases in the rate of trait evolution. We test our method using simulations and then illustrate its application using mammalian body size and lifespan data previously analyzed with respect to protein coding genes. Like other studies, we find processes such as tumor suppression, telomere maintenance, and p53 regulation to be related to changes in longevity and body size. In addition, we also find that skeletal genes, and developmental processes, such as sprouting angiogenesis, are relevant.


Assuntos
Evolução Molecular , Modelos Genéticos , Filogenia , Animais , Longevidade/genética , Humanos , Biologia Computacional/métodos , Simulação por Computador , Tamanho Corporal/genética , Nucleotídeos/genética , Alinhamento de Sequência/métodos
2.
Proc Natl Acad Sci U S A ; 121(18): e2320590121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38621118

RESUMO

Increasing environmental threats and more extreme environmental perturbations place species at risk of population declines, with associated loss of genetic diversity and evolutionary potential. While theory shows that rapid population declines can cause loss of genetic diversity, populations in some environments, like Australia's arid zone, are repeatedly subject to major population fluctuations yet persist and appear able to maintain genetic diversity. Here, we use repeated population sampling over 13 y and genotype-by-sequencing of 1903 individuals to investigate the genetic consequences of repeated population fluctuations in two small mammals in the Australian arid zone. The sandy inland mouse (Pseudomys hermannsburgensis) experiences marked boom-bust population dynamics in response to the highly variable desert environment. We show that heterozygosity levels declined, and population differentiation (FST) increased, during bust periods when populations became small and isolated, but that heterozygosity was rapidly restored during episodic population booms. In contrast, the lesser hairy-footed dunnart (Sminthopsis youngsoni), a desert marsupial that maintains relatively stable population sizes, showed no linear declines in heterozygosity. These results reveal two contrasting ways in which genetic diversity is maintained in highly variable environments. In one species, diversity is conserved through the maintenance of stable population sizes across time. In the other species, diversity is conserved through rapid genetic mixing during population booms that restores heterozygosity lost during population busts.


Assuntos
Mamíferos , Marsupiais , Animais , Camundongos , Austrália , Dinâmica Populacional , Genótipo , Heterozigoto , Variação Genética , Genética Populacional
3.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415852

RESUMO

Island organisms often evolve phenotypes divergent from their mainland counterparts, providing a useful system for studying adaptation under differential selection. In the white-winged fairywren (Malurus leucopterus), subspecies on two islands have a black nuptial plumage whereas the subspecies on the Australian mainland has a blue nuptial plumage. The black subspecies have a feather nanostructure that could in principle produce a blue structural color, suggesting a blue ancestor. An earlier study proposed independent evolution of melanism on the islands based on the history of subspecies divergence. However, the genetic basis of melanism and the origin of color differentiation in this group are still unknown. Here, we used whole-genome resequencing to investigate the genetic basis of melanism by comparing the blue and black M. leucopterus subspecies to identify highly divergent genomic regions. We identified a well-known pigmentation gene ASIP and four candidate genes that may contribute to feather nanostructure development. Contrary to the prediction of convergent evolution of island melanism, we detected signatures of a selective sweep in genomic regions containing ASIP and SCUBE2 not in the black subspecies but in the blue subspecies, which possesses many derived SNPs in these regions, suggesting that the mainland subspecies has re-evolved a blue plumage from a black ancestor. This proposed re-evolution was likely driven by a preexisting female preference. Our findings provide new insight into the evolution of plumage coloration in island versus continental populations, and, importantly, we identify candidate genes that likely play roles in the development and evolution of feather structural coloration.


Assuntos
Melanose , Passeriformes , Aves Canoras , Animais , Aves Canoras/genética , Austrália , Passeriformes/genética , Polimorfismo de Nucleotídeo Único , Plumas , Pigmentação , Cor
4.
BMC Biol ; 22(1): 49, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413944

RESUMO

BACKGROUND: Resolving the phylogeny of rapidly radiating lineages presents a challenge when building the Tree of Life. An Old World avian family Prunellidae (Accentors) comprises twelve species that rapidly diversified at the Pliocene-Pleistocene boundary. RESULTS: Here we investigate the phylogenetic relationships of all species of Prunellidae using a chromosome-level de novo assembly of Prunella strophiata and 36 high-coverage resequenced genomes. We use homologous alignments of thousands of exonic and intronic loci to build the coalescent and concatenated phylogenies and recover four different species trees. Topology tests show a large degree of gene tree-species tree discordance but only 40-54% of intronic gene trees and 36-75% of exonic genic trees can be explained by incomplete lineage sorting and gene tree estimation errors. Estimated branch lengths for three successive internal branches in the inferred species trees suggest the existence of an empirical anomaly zone. The most common topology recovered for species in this anomaly zone was not similar to any coalescent or concatenated inference phylogenies, suggesting presence of anomalous gene trees. However, this interpretation is complicated by the presence of gene flow because extensive introgression was detected among these species. When exploring tree topology distributions, introgression, and regional variation in recombination rate, we find that many autosomal regions contain signatures of introgression and thus may mislead phylogenetic inference. Conversely, the phylogenetic signal is concentrated to regions with low-recombination rate, such as the Z chromosome, which are also more resistant to interspecific introgression. CONCLUSIONS: Collectively, our results suggest that phylogenomic inference should consider the underlying genomic architecture to maximize the consistency of phylogenomic signal.


Assuntos
Fluxo Gênico , Genômica , Aves Canoras , Filogenia , Genômica/métodos , Genoma
5.
Proc Natl Acad Sci U S A ; 121(8): e2319696121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346181

RESUMO

The phylogeny and divergence timing of the Neoavian radiation remain controversial despite recent progress. We analyzed the genomes of 124 species across all Neoavian orders, using data from 25,460 loci spanning four DNA classes, including 5,756 coding sequences, 12,449 conserved nonexonic elements, 4,871 introns, and 2,384 intergenic segments. We conducted a comprehensive sensitivity analysis to account for the heterogeneity across different DNA classes, leading to an optimal tree of Neoaves with high resolution. This phylogeny features a novel Neoavian dichotomy comprising two monophyletic clades: a previously recognized Telluraves (land birds) and a newly circumscribed Aquaterraves (waterbirds and relatives). Molecular dating analyses with 20 fossil calibrations indicate that the diversification of modern birds began in the Late Cretaceous and underwent a constant and steady radiation across the KPg boundary, concurrent with the rise of angiosperms as well as other major Cenozoic animal groups including placental and multituberculate mammals. The KPg catastrophe had a limited impact on avian evolution compared to the Paleocene-Eocene Thermal Maximum, which triggered a rapid diversification of seabirds. Our findings suggest that the evolution of modern birds followed a slow process of gradualism rather than a rapid process of punctuated equilibrium, with limited interruption by the KPg catastrophe. This study places bird evolution into a new context within vertebrates, with ramifications for the evolution of the Earth's biota.


Assuntos
Fósseis , Magnoliopsida , Gravidez , Feminino , Animais , Magnoliopsida/genética , Placenta , Filogenia , Aves/genética , Mamíferos/genética , DNA Mitocondrial/genética , Evolução Biológica
6.
Mol Ecol Resour ; 24(3): e13916, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38124500

RESUMO

Software for realistically simulating complex population genomic processes is revolutionizing our understanding of evolutionary processes, and providing novel opportunities for integrating empirical data with simulations. However, the integration between standalone simulation software and R is currently not well developed. Here, we present slimr, an R package designed to create a seamless link between standalone software SLiM >3.0, one of the most powerful population genomic simulation frameworks, and the R development environment, with its powerful data manipulation and analysis tools. We show how slimr facilitates smooth integration between genetic data, ecological data and simulation in a single environment. The package enables pipelines that begin with data reading, cleaning and manipulation, proceed to constructing empirically based parameters and initial conditions for simulations, then to running numerical simulations and finally to retrieving simulation results in a format suitable for comparisons with empirical data - aided by advanced analysis and visualization tools provided by R. We demonstrate the use of slimr with an example from our own work on the landscape population genomics of desert mammals, highlighting the advantage of having a single integrated tool for both data analysis and simulation. slimr makes the powerful simulation ability of SLiM directly accessible to R users, allowing integrated simulation projects that incorporate empirical data without the need to switch between software environments. This should provide more opportunities for evolutionary biologists and ecologists to use realistic simulations to better understand the interplay between ecological and evolutionary processes.


Assuntos
Metagenômica , Software , Animais , Simulação por Computador , Genômica/métodos , Evolução Biológica , Mamíferos
8.
Front Immunol ; 14: 1250824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965325

RESUMO

Introduction: The Major Histocompatibility Complex (MHC) of vertebrates is a dynamically evolving multigene family primarily responsible for recognizing non-self peptide antigens and triggering a pathogen-specific adaptive immune response. In birds, the MHC was previously thought to evolve via concerted evolution with high degree of gene homogenization and the rapid loss of orthology. However, the discovery of two ancient avian MHC-IIB gene lineages (DAB1 and DAB2) originating before the radiation of extant birds indicated that despite the action of concerted evolution, orthology may be detectable for long evolutionary periods. Methods: Here, we take advantage of rapidly accumulating digital genomic resources to search for the signal of an ancient duplication at the avian MHC-IIA genes, as well as to compare phylogenetic distribution and selection between MHC-IIA and IIB gene lineages. Results: The analysis of MHC sequences from over 230 species representing ca. 70 bird families revealed the presence of two ancient MHC-IIA gene lineages (DAA1 and DAA2) and showed that their phylogenetic distribution matches exactly the distribution of DAB1 and DAB2 lineages, suggesting tight coevolution. The early post-duplication divergence of DAA1 and DAA2 was driven by positive selection fixing radical amino acid differences within the membrane-proximal domain and, most probably, being functionally related to the interactions between α2 and ß2 chains of the MHC-II heterodimer. We detected no evidence for an overall (gene-wide) relaxation or intensification of selection at either DAA1/DAB1 or DAA2/DAB2, but codon-specific differences in selection signature were found at the peptide-binding sites between the two gene lineages, perhaps implying specialization to different pathogen regimes. Discussion: Our results suggest that specific pairing of MHC-II α and ß chains may have an adaptive significance, a conclusion that advances knowledge on the macroevolution of the avian MHC-II and opens exciting novel directions for future research.


Assuntos
Aves , Complexo Principal de Histocompatibilidade , Animais , Filogenia , Aves/genética , Genoma , Antígenos de Histocompatibilidade , Peptídeos/genética
9.
Proc Natl Acad Sci U S A ; 120(43): e2307340120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844245

RESUMO

Echolocation, the detection of objects by means of sound waves, has evolved independently in diverse animals. Echolocators include not only mammals such as toothed whales and yangochiropteran and rhinolophoid bats but also Rousettus fruit bats, as well as two bird lineages, oilbirds and swiftlets. In whales and yangochiropteran and rhinolophoid bats, positive selection and molecular convergence has been documented in key hearing-related genes, such as prestin (SLC26A5), but few studies have examined these loci in other echolocators. Here, we examine patterns of selection and convergence in echolocation-related genes in echolocating birds and Rousettus bats. Fewer of these loci were under selection in Rousettus or birds compared with classically recognized echolocators, and elevated convergence (compared to outgroups) was not evident across this gene set. In certain genes, however, we detected convergent substitutions with potential functional relevance, including convergence between Rousettus and classic echolocators in prestin at a site known to affect hair cell electromotility. We also detected convergence between Yangochiroptera, Rhinolophidea, and oilbirds in TMC1, an important mechanosensory transduction channel in vertebrate hair cells, and observed an amino acid change at the same site within the pore domain. Our results suggest that although most proteins implicated in echolocation in specialized mammals may not have been recruited in birds or Rousettus fruit bats, certain hearing-related loci may have undergone convergent functional changes. Investigating adaptations in diverse echolocators will deepen our understanding of this unusual sensory modality.


Assuntos
Quirópteros , Ecolocação , Animais , Quirópteros/fisiologia , Filogenia , Evolução Molecular , Mamíferos/genética , Audição/genética , Baleias/fisiologia , Aves/genética , Ecolocação/fisiologia
10.
Mol Ecol ; 32(24): 6766-6776, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37873908

RESUMO

In episodic environments like deserts, populations of some animal species exhibit irregular fluctuations such that populations are alternately large and connected or small and isolated. Such dynamics are typically driven by periodic resource pulses due, for example, to large but infrequent rainfall events. The repeated population bottlenecks resulting from fragmentation should lower genetic diversity over time, yet species undergoing these fluctuations appear to maintain high levels of genetic diversity. To resolve this apparent paradox, we simulated a metapopulation of constant size undergoing repeat episodes of fragmentation and change in gene flow to mimic outcomes experienced by mammals in an Australian desert. We show that episodic fragmentation and gene flow have contrasting effects on two measures of genetic diversity: heterozygosity and allelic richness. Specifically, fragmentation into many, small subpopulations, coupled with periods of infrequent gene flow, preserves allelic richness at the expense of heterozygosity. In contrast, fragmentation into a few, large subpopulations maintains heterozygosity at the expense of allelic richness. The strength of the trade-off between heterozygosity and allelic richness depends on the amount of gene flow and the frequency of gene flow events. Our results imply that the type of genetic diversity maintained among species living in strongly fluctuating environments will depend on the way populations fragment, with our results highlighting different mechanisms for maintaining allelic richness and heterozygosity in small, fragmented populations.


Assuntos
Fluxo Gênico , Variação Genética , Animais , Austrália , Heterozigoto , Genética Populacional , Mamíferos
11.
Mol Biol Evol ; 40(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37665177

RESUMO

An important goal of evolutionary genomics is to identify genomic regions whose substitution rates differ among lineages. For example, genomic regions experiencing accelerated molecular evolution in some lineages may provide insight into links between genotype and phenotype. Several comparative genomics methods have been developed to identify genomic accelerations between species, including a Bayesian method called PhyloAcc, which models shifts in substitution rate in multiple target lineages on a phylogeny. However, few methods consider the possibility of discordance between the trees of individual loci and the species tree due to incomplete lineage sorting, which might cause false positives. Here, we present PhyloAcc-GT, which extends PhyloAcc by modeling gene tree heterogeneity. Given a species tree, we adopt the multispecies coalescent model as the prior distribution of gene trees, use Markov chain Monte Carlo (MCMC) for inference, and design novel MCMC moves to sample gene trees efficiently. Through extensive simulations, we show that PhyloAcc-GT outperforms PhyloAcc and other methods in identifying target lineage-specific accelerations and detecting complex patterns of rate shifts, and is robust to specification of population size parameters. PhyloAcc-GT is usually more conservative than PhyloAcc in calling convergent rate shifts because it identifies more accelerations on ancestral than on terminal branches. We apply PhyloAcc-GT to two examples of convergent evolution: flightlessness in ratites and marine mammal adaptations, and show that PhyloAcc-GT is a robust tool to identify shifts in substitution rate associated with specific target lineages while accounting for incomplete lineage sorting.


Assuntos
Evolução Biológica , Modelos Genéticos , Animais , Teorema de Bayes , Filogenia , Genômica , Mamíferos
12.
Mol Biol Evol ; 40(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37402641

RESUMO

Throughout the Plio-Pleistocene, climate change has impacted tropical marine ecosystems substantially, with even more severe impacts predicted in the Anthropocene. Although many studies have clarified demographic histories of seabirds in polar regions, the history of keystone seabirds of the tropics is unclear, despite the prominence of albatrosses (Diomedeidae, Procellariiformes) as the largest and most threatened group of oceanic seabirds. To understand the impact of climate change on tropical albatrosses, we investigated the evolutionary and demographic histories of all four North Pacific albatrosses and their prey using whole-genome analyses. We report a striking concordance in demographic histories among the four species, with a notable dip in effective population size at the beginning of the Pleistocene and a population expansion in the Last Glacial Period when sea levels were low, which resulted in increased potential coastal breeding sites. Abundance of the black-footed albatross dropped again during the Last Glacial Maximum, potentially linked to climate-driven loss of breeding sites and concordant genome-derived decreases in its major prey. We find very low genome-wide (π < 0.001) and adaptative genetic diversities across the albatrosses, with genes of the major histocompatibility complex close to monomorphic. We also identify recent selective sweeps at genes associated with hyperosmotic adaptation, longevity, and cognition and memory. Our study has shed light on the evolutionary and demographic histories of the largest tropical oceanic seabirds and provides evidence for their large population fluctuations and alarmingly low genetic diversities.


Assuntos
Evolução Biológica , Ecossistema , Animais , Variação Genética , Aves
13.
Biology (Basel) ; 12(6)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37372131

RESUMO

Aquaporins (AQPs) are a highly diverse family of transmembrane proteins involved in osmotic regulation that played an important role in the conquest of land by tetrapods. However, little is known about their possible implication in the acquisition of an amphibious lifestyle in actinopterygian fishes. Herein, we investigated the molecular evolution of AQPs in 22 amphibious actinopterygian fishes by assembling a comprehensive dataset that was used to (1) catalogue AQP paralog members and classes; (2) determine the gene family birth and death process; (3) test for positive selection in a phylogenetic framework; and (4) reconstruct structural protein models. We found evidence of adaptive evolution in 21 AQPs belonging to 5 different classes. Almost half of the tree branches and protein sites that were under positive selection were found in the AQP11 class. The detected sequence changes indicate modifications in molecular function and/or structure, which could be related to adaptation to an amphibious lifestyle. AQP11 orthologues appear to be the most promising candidates to have facilitated the processes of the water-to-land transition in amphibious fishes. Additionally, the signature of positive selection found in the AQP11b stem branch of the Gobiidae clade suggests a possible case of exaptation in this clade.

14.
Mol Biol Evol ; 40(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36911907

RESUMO

Carotenoid pigments underlie most of the red, orange, and yellow visual signals used in mate choice in vertebrates. However, many of the underlying processes surrounding the production of carotenoid-based traits remain unclear due to the complex nature of carotenoid uptake, metabolism, and deposition across tissues. Here, we leverage the ability to experimentally induce the production of a carotenoid-based red plumage patch in the red-backed fairywren (Malurus melanocephalus), a songbird in which red plumage is an important male sexual signal. We experimentally elevated testosterone in unornamented males lacking red plumage to induce the production of ornamentation and compared gene expression in both the liver and feather follicles between unornamented control males, testosterone-implanted males, and naturally ornamented males. We show that testosterone upregulates the expression of CYP2J19, a gene known to be involved in ketocarotenoid metabolism, and a putative carotenoid processing gene (ELOVL6) in the liver, and also regulates the expression of putative carotenoid transporter genes in red feather follicles on the back, including ABCG1. In black feathers, carotenoid-related genes are downregulated and melanin genes upregulated, but we find that carotenoids are still present in the feathers. This may be due to the activity of the carotenoid-cleaving enzyme BCO2 in black feathers. Our study provides a first working model of a pathway for carotenoid-based trait production in free-living birds, implicates testosterone as a key regulator of carotenoid-associated gene expression, and suggests hormones may coordinate the many processes that underlie the production of these traits across multiple tissues.


Assuntos
Passeriformes , Aves Canoras , Animais , Masculino , Testosterona/metabolismo , Pigmentação/genética , Carotenoides/metabolismo , Aves Canoras/genética , Plumas , Expressão Gênica
15.
Animals (Basel) ; 13(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36766360

RESUMO

Non-avian reptiles comprise a large proportion of amniote vertebrate diversity, with squamate reptiles-lizards and snakes-recently overtaking birds as the most species-rich tetrapod radiation. Despite displaying an extraordinary diversity of phenotypic and genomic traits, genomic resources in non-avian reptiles have accumulated more slowly than they have in mammals and birds, the remaining amniotes. Here we review the remarkable natural history of non-avian reptiles, with a focus on the physical traits, genomic characteristics, and sequence compositional patterns that comprise key axes of variation across amniotes. We argue that the high evolutionary diversity of non-avian reptiles can fuel a new generation of whole-genome phylogenomic analyses. A survey of phylogenetic investigations in non-avian reptiles shows that sequence capture-based approaches are the most commonly used, with studies of markers known as ultraconserved elements (UCEs) especially well represented. However, many other types of markers exist and are increasingly being mined from genome assemblies in silico, including some with greater information potential than UCEs for certain investigations. We discuss the importance of high-quality genomic resources and methods for bioinformatically extracting a range of marker sets from genome assemblies. Finally, we encourage herpetologists working in genomics, genetics, evolutionary biology, and other fields to work collectively towards building genomic resources for non-avian reptiles, especially squamates, that rival those already in place for mammals and birds. Overall, the development of this cross-amniote phylogenomic tree of life will contribute to illuminate interesting dimensions of biodiversity across non-avian reptiles and broader amniotes.

16.
PLoS Genet ; 19(1): e1010551, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656838

RESUMO

Human activities have precipitated a rise in the levels of introgressive gene flow among animals. The investigation of conspecific populations at different time points may shed light on the magnitude of human-mediated introgression. We used the red junglefowl Gallus gallus, the wild ancestral form of the chicken, as our study system. As wild junglefowl and domestic chickens readily admix, conservationists fear that domestic introgression into junglefowl may compromise their wild genotype. By contrasting the whole genomes of 51 chickens with 63 junglefowl from across their natural range, we found evidence of a loss of the wild genotype across the Anthropocene. When comparing against the genomes of junglefowl from approximately a century ago using rigorous ancient-DNA protocols, we discovered that levels of domestic introgression are not equal among and within modern wild populations, with the percentage of domestic ancestry around 20-50%. We identified a number of domestication markers in which chickens are deeply differentiated from historic junglefowl regardless of breed and/or geographic provenance, with eight genes under selection. The latter are involved in pathways dealing with development, reproduction and vision. The wild genotype is an allelic reservoir that holds most of the genetic diversity of G. gallus, a species which is immensely important to human society. Our study provides fundamental genomic infrastructure to assist in efforts to prevent a further loss of the wild genotype through introgression of domestic alleles.


Assuntos
Galinhas , Genética Populacional , Genoma , Animais , Galinhas/genética , Fluxo Gênico , Genoma/genética , Genótipo , Filogenia
17.
Mol Ecol ; 32(6): 1248-1270, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35797346

RESUMO

Whole-genome surveys of genetic diversity and geographic variation often yield unexpected discoveries of novel structural variation, which long-read DNA sequencing can help clarify. Here, we report on whole-genome phylogeography of a bird exhibiting classic vicariant geographies across Australia and New Guinea, the blue-faced honeyeater (Entomyzon cyanotis), and the discovery and characterization of a novel neo-Z chromosome by long-read sequencing. Using short-read genome-wide SNPs, we inferred population divergence events within E. cyanotis across the Carpentarian and other biogeographic barriers during the Pleistocene (~0.3-1.7 Ma). Evidence for introgression between nonsister populations supports a hypothesis of reticulate evolution around a triad of dynamic barriers around Pleistocene Lake Carpentaria between Australia and New Guinea. During this phylogeographic survey, we discovered a large (134 Mbp) neo-Z chromosome and we explored its diversity, divergence and introgression landscape. We show that, as in some sylvioid passerine birds, a fusion occurred between chromosome 5 and the Z chromosome to form a neo-Z chromosome; and in E. cyanotis, the ancestral pseudoautosomal region (PAR) appears nonrecombinant between Z and W, along with most of the fused chromosome 5. The added recombination-suppressed portion of the neo-Z (~37.2 Mbp) displays reduced diversity and faster population genetic differentiation compared with the ancestral-Z. Yet, the new PAR (~17.4 Mbp) shows elevated diversity and reduced differentiation compared to autosomes, potentially resulting from introgression. In our case, long-read sequencing helped clarify the genomic landscape of population divergence on autosomes and sex chromosomes in a species where prior knowledge of genome structure was still incomplete.


Assuntos
Arecaceae , Passeriformes , Animais , Filogeografia , Cromossomos Sexuais , Genômica , Passeriformes/genética
18.
Front Genet ; 13: 979746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425073

RESUMO

The major histocompatibility complex (MHC) is an important genomic region for adaptive immunity and has long been studied in ecological and evolutionary contexts, such as disease resistance and mate and kin selection. The MHC has been investigated extensively in mammals and birds but far less so in squamate reptiles, the third major radiation of amniotes. We localized the core MHC genomic region in two squamate species, the green anole (Anolis carolinensis) and brown anole (A. sagrei), and provide the first detailed characterization of the squamate MHC, including the presence and ordering of known MHC genes in these species and comparative assessments of genomic structure and composition in MHC regions. We find that the Anolis MHC, located on chromosome 2 in both species, contains homologs of many previously-identified mammalian MHC genes in a single core MHC region. The repetitive element composition in anole MHC regions was similar to those observed in mammals but had important distinctions, such as higher proportions of DNA transposons. Moreover, longer introns and intergenic regions result in a much larger squamate MHC region (11.7 Mb and 24.6 Mb in the green and brown anole, respectively). Evolutionary analyses of MHC homologs of anoles and other representative amniotes uncovered generally monophyletic relationships between species-specific homologs and a loss of the peptide-binding domain exon 2 in one of two mhc2ß gene homologs of each anole species. Signals of diversifying selection in each anole species was evident across codons of mhc1, many of which appear functionally relevant given known structures of this protein from the green anole, chicken, and human. Altogether, our investigation fills a major gap in understanding of amniote MHC diversity and evolution and provides an important foundation for future squamate-specific or vertebrate-wide investigations of the MHC.

19.
Curr Biol ; 32(20): R1149-R1154, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36283383

RESUMO

Passeriformes, more commonly known as perching birds or passerines, are the most species-rich group of birds. Totaling nearly 6500 species, approximately two out of every three bird species is a passerine. Passerines are globally distributed and are among the most abundant birds at nearly every terrestrial location on Earth. Owing to their diversity, abundance and cosmopolitan distribution, passerines are among the most familiar of all birds and have figured prominently in both human culture and science. For example, humans have long been captivated by the beautiful songs of many passerines (such as the Common Nightingale (Luscinia megarhynchos) in Europe and the Wood Thrush (Hylocichla mustelina) of North America), and it is common in some cultures - although globally discouraged as ecologically damaging, especially when birds are captured directly from the wild - to keep passerines as pets. Nevertheless, the vocal prowess and frequent ability to thrive in captivity have made passerines important models for lab-based research ranging from neurobiology to genetics. In contrast, the diversity and accessibility of many passerine birds in the wild continue to make them among the best animal models for field-based studies of behavioral ecology, evolution, mating systems, life history, disease resistance, ecological and evolutionary responses to climate change, among many other fields.


Assuntos
Passeriformes , Aves Canoras , Animais , Humanos , Passeriformes/fisiologia , Europa (Continente) , América do Norte
20.
Evolution ; 76(8): 1720-1736, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35748580

RESUMO

Ornamentation, such as the showy plumage of birds, is widespread among female vertebrates, yet the evolutionary pressures shaping female ornamentation remain uncertain. In part this is due to a poor understanding of the mechanistic route to ornamentation in females. To address this issue, we evaluated the evolutionary history of ornament expression in a tropical passerine bird, the White-shouldered Fairywren, whose females, but not males, strongly vary between populations in occurrence of ornamented black-and-white plumage. We first use phylogenomic analysis to demonstrate that female ornamentation is derived and that female ornamentation evolves independently of changes in male plumage. We then use exogenous testosterone in a field experiment to induce partial ornamentation in naturally unornamented females. By sequencing the transcriptome of experimentally induced ornamented and natural feathers, we identify genes expressed during ornament production and evaluate the degree to which female ornamentation in this system is associated with elevated testosterone, as is common in males. We reveal that some ornamentation in females is linked to testosterone and that sexes differ in ornament-linked gene expression. Lastly, using genomic outlier analysis we identify a candidate melanogenesis gene that lies in a region of high genomic divergence among populations that is also differentially expressed in feather follicles of different female plumages. Taken together, these findings are consistent with sex-specific selection favoring the evolution of female ornaments and demonstrate a key role for testosterone in generating population divergence in female ornamentation through gene regulation. More broadly, our work highlights similarities and differences in how ornamentation evolves in the sexes.


Assuntos
Passeriformes , Aves Canoras , Animais , Plumas/fisiologia , Feminino , Masculino , Passeriformes/genética , Pigmentação/genética , Caracteres Sexuais , Aves Canoras/genética , Testosterona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA