Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Microbiol ; 23(10): e13372, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34152077

RESUMO

Syncollin is a 16-kDa protein found predominantly in the zymogen granules of pancreatic acinar cells, with expression at lower levels in intestinal epithelial cells and neutrophils. Here, we used Strep-tagged syncollin isolated from the supernatant of transiently transfected mammalian cells to test the hypothesis that syncollin has antibacterial properties, which might enable it to play a role in host defence in the gut and possibly elsewhere. We show that syncollin is an exceptionally thermostable protein with a circular dichroism spectrum consistent with a predominantly beta-sheet structure. Syncollin binds to bacterial peptidoglycan and restricts the growth of representative Gram-positive (Lactococcus lactis) and Gram-negative (Escherichia coli) bacteria. Syncollin induces propidium iodide uptake into E. coli (but not L. lactis), indicating permeabilisation of the bacterial membrane. It also causes surface structural damage in both L. lactis and E. coli, as visualised by scanning electron microscopy. We propose that syncollin is a previously unidentified member of a large group of antimicrobial polypeptides that control the gut microbiome. TAKE AWAYS: Syncollin is a 16-kDa protein found in pancreatic zymogen granules. Syncollin is highly thermostable and has a predominantly beta-sheet structure. Syncollin binds peptidoglycan and restricts the growth of L. lactis and E. coli. Syncollin causes propidium iodide uptake into E. coli (but not L. lactis). Syncollin causes surface structural damage in both L. lactis and E. coli.


Assuntos
Proteínas de Transporte , Lactococcus lactis , Animais , Antibacterianos/farmacologia , Escherichia coli , Proteínas de Membrana , Peptídeos
2.
Proc Natl Acad Sci U S A ; 117(26): 14936-14947, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541055

RESUMO

Mre11 and Rad50 (M/R) proteins are part of an evolutionarily conserved macromolecular apparatus that maintains genomic integrity through repair pathways. Prior structural studies have revealed that this apparatus is extremely dynamic, displaying flexibility in the long coiled-coil regions of Rad50, a member of the structural maintenance of chromosome (SMC) superfamily of ATPases. However, many details of the mechanics of M/R chromosomal manipulation during DNA-repair events remain unclear. Here, we investigate the properties of the thermostable M/R complex from the archaeon Sulfolobus acidocaldarius using atomic force microscopy (AFM) to understand how this macromolecular machinery orchestrates DNA repair. While previous studies have observed canonical interactions between the globular domains of M/R and DNA, we observe transient interactions between DNA substrates and the Rad50 coiled coils. Fast-scan AFM videos (at 1-2 frames per second) of M/R complexes reveal that these interactions result in manipulation and translocation of the DNA substrates. Our study also shows dramatic and unprecedented ATP-dependent DNA unwinding events by the M/R complex, which extend hundreds of base pairs in length. Supported by molecular dynamic simulations, we propose a model for M/R recognition at DNA breaks in which the Rad50 coiled coils aid movement along DNA substrates until a DNA end is encountered, after which the DNA unwinding activity potentiates the downstream homologous recombination (HR)-mediated DNA repair.


Assuntos
Proteínas Arqueais/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Proteína Homóloga a MRE11/metabolismo , Sulfolobus acidocaldarius/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , DNA Arqueal/química , DNA Arqueal/genética , DNA Arqueal/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/química , Exodesoxirribonucleases/genética , Proteína Homóloga a MRE11/química , Proteína Homóloga a MRE11/genética , Microscopia de Força Atômica , Ligação Proteica , Sulfolobus acidocaldarius/química , Sulfolobus acidocaldarius/enzimologia , Sulfolobus acidocaldarius/metabolismo
3.
Sci Rep ; 10(1): 3259, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094408

RESUMO

Seipin deficiency causes severe congenital generalized lipodystrophy (CGL) and metabolic disease. However, how seipin regulates adipocyte development and function remains incompletely understood. We previously showed that seipin acts as a scaffold protein for AGPAT2, whose disruption also causes CGL. More recently, seipin has been reported to promote adipogenesis by directly inhibiting GPAT3, leading to the suggestion that GPAT inhibitors could offer novel treatments for CGL. Here we investigated the interactions between seipin, GPAT3 and AGPAT2. We reveal that seipin and GPAT3 associate via direct interaction and that seipin can simultaneously bind GPAT3 and AGPAT2. Inhibiting the expression of seipin, AGPAT2 or GPAT3 led to impaired induction of early markers of adipocyte differentiation in cultured cells. However, consistent with normal adipose mass in GPAT3-null mice, GPAT3 inhibition did not prevent the formation of mature adipocytes. Nonetheless, loss of GPAT3 in seipin-deficient preadipocytes exacerbated the failure of adipogenesis in these cells. Thus, our data indicate that GPAT3 plays a modest positive role in adipogenesis and argue against the potential of GPAT inhibitors to rescue white adipose tissue mass in CGL2. Overall, our study reveals novel mechanistic insights regarding the molecular pathogenesis of severe lipodystrophy caused by mutations in either seipin or AGPAT2.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Aciltransferases/metabolismo , Adipócitos/citologia , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Células 3T3-L1 , Adipogenia , Tecido Adiposo/patologia , Animais , Diferenciação Celular , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C3H , Microscopia de Força Atômica , Mutação
4.
Methods Mol Biol ; 1998: 203-217, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31250304

RESUMO

The endosomal sorting complex required for transport (ESCRT)-III proteins are known to assemble into filaments that mediate membrane remodeling and fission in various biological processes, including the formation of endosomal multivesicular bodies, viral budding, cytokinesis, plasma membrane repair, nuclear pore quality control, nuclear envelope reformation, and neuron pruning. The study of the regulation and function of ESCRT-III proteins is therefore crucial to understand these events and requires a combination of in vivo and in vitro experimental techniques. Here we describe two protocols for the purification of human and Drosophila ESCRT-III proteins from bacteria and their use in in vitro phosphorylation assays and atomic force microscopy experiments on membrane lipid bilayers. These protocols can also be applied for the purification of other proteins that are insoluble when expressed in bacteria.


Assuntos
Proteínas de Drosophila/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Bicamadas Lipídicas/metabolismo , Microscopia de Força Atômica/métodos , Proteínas Recombinantes/metabolismo , Cromatografia de Afinidade/métodos , Cromatografia em Gel/métodos , Clonagem Molecular/métodos , Proteínas de Drosophila/genética , Proteínas de Drosophila/isolamento & purificação , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/isolamento & purificação , Vetores Genéticos/genética , Fosforilação , Plasmídeos/genética , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Transformação Bacteriana
5.
Neuron ; 102(5): 976-992.e5, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31053408

RESUMO

Neurotransmitter-gated ion channels are allosteric proteins that switch on and off in response to agonist binding. Most studies have focused on the agonist-bound, activated channel while assigning a lesser role to the apo or resting state. Here, we show that nanoscale mobility of resting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors (AMPA receptors) predetermines responsiveness to neurotransmitter, allosteric anions and TARP auxiliary subunits. Mobility at rest is regulated by alternative splicing of the flip/flop cassette of the ligand-binding domain, which controls motions in the distant AMPA receptor N-terminal domain (NTD). Flip variants promote moderate NTD movement, which establishes slower channel desensitization and robust regulation by anions and auxiliary subunits. In contrast, greater NTD mobility imparted by the flop cassette acts as a master switch to override allosteric regulation. In AMPA receptor heteromers, TARP stoichiometry further modifies these actions of the flip/flop cassette generating two functionally distinct classes of partially and fully TARPed receptors typical of cerebellar stellate and Purkinje cells.


Assuntos
Células de Purkinje/metabolismo , Receptores de AMPA/metabolismo , Regulação Alostérica , Sítio Alostérico , Processamento Alternativo , Animais , Cerebelo/citologia , Cerebelo/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Células HEK293 , Humanos , Ativação do Canal Iônico , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Camundongos , Microscopia de Força Atômica , Técnicas de Patch-Clamp , Domínios Proteicos , Isoformas de Proteínas/genética , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptores de AMPA/genética , Receptores de AMPA/ultraestrutura
6.
Mol Metab ; 24: 108-119, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30940487

RESUMO

OBJECTIVE: Impaired expansion of peripheral fat contributes to the pathogenesis of insulin resistance and Type 2 Diabetes (T2D). We aimed to identify novel disease-gene interactions during adipocyte differentiation. METHODS: Genes in disease-associated loci for T2D, adiposity and insulin resistance were ranked according to expression in human adipocytes. The top 125 genes were ablated in human pre-adipocytes via CRISPR/CAS9 and the resulting cellular phenotypes quantified during adipocyte differentiation with high-content microscopy and automated image analysis. Morphometric measurements were extracted from all images and used to construct morphologic profiles for each gene. RESULTS: Over 107 morphometric measurements were obtained. Clustering of the morphologic profiles accross all genes revealed a group of 14 genes characterized by decreased lipid accumulation, and enriched for known lipodystrophy genes. For two lipodystrophy genes, BSCL2 and AGPAT2, sub-clusters with PLIN1 and CEBPA identifed by morphological similarity were validated by independent experiments as novel protein-protein and gene regulatory interactions. CONCLUSIONS: A morphometric approach in adipocytes can resolve multiple cellular mechanisms for metabolic disease loci; this approach enables mechanistic interrogation of the hundreds of metabolic disease loci whose function still remains unknown.


Assuntos
Adipócitos/citologia , Adipogenia , Diabetes Mellitus/genética , Redes Reguladoras de Genes , Mapas de Interação de Proteínas , Aciltransferases/genética , Aciltransferases/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células Cultivadas , Diabetes Mellitus/patologia , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Resistência à Insulina , Perilipina-1/genética , Perilipina-1/metabolismo , Fenótipo , Transcriptoma
7.
Langmuir ; 35(27): 8889-8895, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-30857390

RESUMO

Single-molecule imaging of proteins using atomic force microscopy (AFM) is crucially dependent on protein attachment to ultraflat substrates. The template-stripping (TS) technique, which can be used to create large areas of atomically flat gold, has been used to great effect for this purpose. However, this approach requires an epoxy, which can swell in solution, causing surface roughening and substantially increasing the thickness of any sample, preventing its use on acoustic resonators in liquid. Diffusion bonding techniques should circumvent this problem but cannot be used on samples containing patterned features with mismatched heights because of cracking and poor transfer. Here, we describe a new technique called pressure-forming TS (PTS), which permits an ultraflat (0.35 ± 0.05 nm root-mean-square roughness) layer of gold to be transferred to the surface of a patterned substrate at low temperature and pressure. We demonstrate this technique by modifying a quartz crystal microbalance (QCM) sensor to contain an ultraflat gold surface. Standard QCM chips have substantial roughness, preventing AFM imaging of proteins on the surface after measurement. With our approach, there is no need to run samples in parallel: the modified QCM chip is flat enough to permit high-contrast AFM imaging after adsorption studies have been conducted. The PTS-QCM chips are then used to demonstrate adsorption of bovine serum albumin in comparison to rough QCM chips. The ability to attach thin layers of ultraflat metals to surfaces of heterogeneous nature without epoxy will have many applications in diverse fields where there is a requirement to observe nanoscale phenomena with multiple techniques, including surface and interfacial science, optics, and biosensing.


Assuntos
Ouro/química , Nanopartículas/química , Técnicas de Microbalança de Cristal de Quartzo , Soroalbumina Bovina/química , Animais , Bovinos , Eletrodos , Microscopia de Força Atômica , Tamanho da Partícula , Pressão , Propriedades de Superfície
8.
Environ Toxicol ; 33(1): 63-71, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29068160

RESUMO

Fluoride exposure is widespread, with drinking water commonly containing natural and artificially added sources of the ion. Ingested fluoride undergoes absorption across the gastric and intestinal epithelia. Previous studies have reported adverse gastrointestinal effects with high levels of fluoride exposure. Here, we examined the effects of fluoride on the transepithelial ion transport and resistance of three intestinal epithelia. We used the Caco-2 cell line as a model of human intestinal epithelium, and rat and mouse colonic epithelia for purposes of comparison. Fluoride caused a concentration-dependent decline in forskolin-induced Cl- secretion and transepithelial resistance of Caco-2 cell monolayers, with an IC50 for fluoride of about 3 mM for both parameters. In the presence of 5 mM fluoride, transepithelial resistance fell exponentially with time, with a t1/2 of about 7 hours. Subsequent imaging by immunofluorescence and scanning electron microscopy showed structural abnormalities in Caco-2 cell monolayers exposed to fluoride. The Young's modulus of the epithelium was not affected by fluoride, although proteomic analysis revealed changes in expression of a number of proteins, particularly those involved in cell-cell adhesion. In line with its effects on Caco-2 cell monolayers, fluoride, at 5 mM, also had profound effects on Cl- secretion and transepithelial resistance of both rat and mouse colonic epithelia. Our results show that treatment with fluoride has major effects on the structure, function, and proteome of intestinal epithelia, but only at concentrations considerably higher than those likely to be encountered in vivo, when much lower fluoride doses are normally ingested on a chronic basis.


Assuntos
Fluoretos/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Animais , Células CACO-2 , Adesão Celular/efeitos dos fármacos , Cloretos/metabolismo , Módulo de Elasticidade/efeitos dos fármacos , Humanos , Mucosa Intestinal/fisiologia , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Técnicas de Patch-Clamp , Proteoma/metabolismo , Ratos
9.
Environ Toxicol ; 32(4): 1455-1467, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27548804

RESUMO

High concentrations of fluoride in the body may cause toxic effects. Here, we investigated the effects of fluoride on the structure, function, and proteome of a cortical collecting duct epithelium in vitro. Kidney tubule cells (M-1) were chosen because the concentration of fluoride in the kidney is 4-5-fold higher than that in plasma. Mouse M-1 cell monolayers were incubated in fluoride-containing media, and the amiloride-sensitive short-circuit current and transepithelial resistance were measured. The Young's modulus of the epithelium was determined using atomic force microscopy, and the effect of fluoride on epithelial structure was assessed using scanning and transmission electron microscopy, and immunofluorescence. Differences in the expression of membrane proteins were evaluated using proteomics and bioinformatics. Fluoride exposure reduced both transepithelial Na+ transport and resistance. The IC50 for fluoride was ∼300 µM for both effects, and the half-times for the decays of ion transport and resistance were 8.4 h and 3.6 days, respectively. Fluoride treatment did not affect the sensitivity of Na+ transport to amiloride. The Young's modulus of the epithelium was also unaffected by fluoride; however, the functional effects of fluoride were accompanied by marked structural effects. Proteomic analysis revealed changes in expression of a number of proteins, and particularly mitochondrial proteins. Treatment with fluoride had profound effects on the structure, function and proteome of a model cortical collecting duct epithelium. Significantly, however, these effects were produced only at concentrations considerably higher than those likely to be encountered in vivo. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1455-1467, 2017.


Assuntos
Cariostáticos/toxicidade , Células Epiteliais/metabolismo , Proteoma/metabolismo , Fluoreto de Sódio/toxicidade , Animais , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Túbulos Renais/citologia , Potenciais da Membrana , Camundongos , Mapas de Interação de Proteínas , Proteômica
10.
Open Biol ; 6(10)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27784789

RESUMO

The chromosomal passenger complex (CPC)-composed of Aurora B kinase, Borealin, Survivin and INCENP-surveys the fidelity of genome segregation throughout cell division. The CPC has been proposed to prevent polyploidy by controlling the final separation (known as abscission) of the two daughter cells via regulation of the ESCRT-III CHMP4C component. The molecular details are, however, still unclear. Using atomic force microscopy, we show that CHMP4C binds to and remodels membranes in vitro Borealin prevents the association of CHMP4C with membranes, whereas Aurora B interferes with CHMP4C's membrane remodelling activity. Moreover, we show that CHMP4C phosphorylation is not required for its assembly into spiral filaments at the abscission site and that two distinctly localized pools of phosphorylated CHMP4C exist during cytokinesis. We also characterized the CHMP4C interactome in telophase cells and show that the centralspindlin complex associates preferentially with unphosphorylated CHMP4C in cytokinesis. Our findings indicate that gradual dephosphorylation of CHMP4C triggers a 'relay' mechanism between the CPC and centralspindlin that regulates the timely distribution and activation of CHMP4C for the execution of abscission.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Citocinese , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Aurora Quinase B/metabolismo , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Células HeLa , Humanos , Microscopia de Força Atômica , Fosforilação , Ligação Proteica , Mapas de Interação de Proteínas , Telófase
11.
J Biol Chem ; 291(40): 21257-21270, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27528604

RESUMO

Neurotransmitters and peptide hormones are secreted by regulated vesicle exocytosis. CAPS (also known as CADPS) is a 145-kDa cytosolic and peripheral membrane protein required for vesicle docking and priming steps that precede Ca2+-triggered vesicle exocytosis. CAPS binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and SNARE proteins and is proposed to promote SNARE protein complex assembly for vesicle docking and priming. We characterized purified soluble CAPS as mainly monomer in equilibrium with small amounts of dimer. However, the active form of CAPS bound to PC12 cell membranes or to liposomes containing PI(4,5)P2 and Q-SNARE proteins was mainly dimer. CAPS dimer formation required its C2 domain based on mutation or deletion studies. Moreover, C2 domain mutations or deletions resulted in a loss of CAPS function in regulated vesicle exocytosis, indicating that dimerization is essential for CAPS function. Comparison of the CAPS C2 domain to a structurally defined Munc13-1 C2A domain dimer revealed conserved residues involved in CAPS dimerization. We conclude that CAPS functions as a C2 domain-mediated dimer in regulated vesicle exocytosis. The unique tandem C2-PH domain of CAPS may serve as a PI(4,5)P2-triggered switch for dimerization. CAPS dimerization may be coupled to oligomeric SNARE complex assembly for vesicle docking and priming.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Exocitose/fisiologia , Multimerização Proteica/fisiologia , Vesículas Secretórias/metabolismo , Animais , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células PC12 , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Domínios Proteicos , Proteínas Q-SNARE/química , Proteínas Q-SNARE/genética , Proteínas Q-SNARE/metabolismo , Ratos , Vesículas Secretórias/química , Vesículas Secretórias/genética
12.
J Cell Biol ; 213(1): 65-79, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-27069021

RESUMO

Sigma1 receptors (σ1Rs) are expressed widely; they bind diverse ligands, including psychotropic drugs and steroids, regulate many ion channels, and are implicated in cancer and addiction. It is not known how σ1Rs exert such varied effects. We demonstrate that σ1Rs inhibit store-operated Ca(2+)entry (SOCE), a major Ca(2+)influx pathway, and reduce the Ca(2+)content of the intracellular stores. SOCE was inhibited by expression of σ1R or an agonist of σ1R and enhanced by loss of σ1R or an antagonist. Within the endoplasmic reticulum (ER), σ1R associated with STIM1, the ER Ca(2+)sensor that regulates SOCE. This interaction was modulated by σ1R ligands. After depletion of Ca(2+)stores, σ1R accompanied STIM1 to ER-plasma membrane (PM) junctions where STIM1 stimulated opening of the Ca(2+)channel, Orai1. The association of STIM1 with σ1R slowed the recruitment of STIM1 to ER-PM junctions and reduced binding of STIM1 to PM Orai1. We conclude that σ1R attenuates STIM1 coupling to Orai1 and thereby inhibits SOCE.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores sigma/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteína ORAI1 , Molécula 1 de Interação Estromal , Receptor Sigma-1
13.
Biosci Rep ; 36(2)2016.
Artigo em Inglês | MEDLINE | ID: mdl-26934982

RESUMO

Iron is essential for the survival and virulence of pathogenic bacteria. The FeoB transporter allows the bacterial cell to acquire ferrous iron from its environment, making it an excellent drug target in intractable pathogens. The protein consists of an N-terminal GTP-binding domain and a C-terminal membrane domain. Despite the availability of X-ray crystal structures of the N-terminal domain, many aspects of the structure and function of FeoB remain unclear, such as the structure of the membrane domain, the oligomeric state of the protein, the molecular mechanism of iron transport, and how this is coupled to GTP hydrolysis at the N-terminal domain. In the present study, we describe the first homology model of FeoB. Due to the lack of sequence homology between FeoB and other transporters, the structures of four different proteins were used as templates to generate the homology model of full-length FeoB, which predicts a trimeric structure. We confirmed this trimeric structure by both blue-native-PAGE (BN-PAGE) and AFM. According to our model, the membrane domain of the trimeric protein forms a central pore lined by highly conserved cysteine residues. This pore aligns with a central pore in the N-terminal GTPase domain (G-domain) lined by aspartate residues. Biochemical analysis of FeoB from Pseudomonas aeruginosa further reveals a putative iron sensor domain that could connect GTP binding/hydrolysis to the opening of the pore. These results indicate that FeoB might not act as a transporter, but rather as a GTP-gated channel.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte de Cátions/química , Modelos Moleculares , Pseudomonas aeruginosa/química , Domínios Proteicos , Estrutura Quaternária de Proteína
14.
Mol Biol Cell ; 27(6): 979-89, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26792839

RESUMO

C2 domains are widespread motifs that often serve as Ca(2+)-binding modules; some proteins have more than one copy. An open issue is whether these domains, when duplicated within the same parent protein, interact with one another to regulate function. In the present study, we address the functional significance of interfacial residues between the tandem C2 domains of synaptotagmin (syt)-1, a Ca(2+) sensor for neuronal exocytosis. Substitution of four residues, YHRD, at the domain interface, disrupted the interaction between the tandem C2 domains, altered the intrinsic affinity of syt-1 for Ca(2+), and shifted the Ca(2+) dependency for binding to membranes and driving membrane fusion in vitro. When expressed in syt-1 knockout neurons, the YHRD mutant yielded reductions in synaptic transmission, as compared with the wild-type protein. These results indicate that physical interactions between the tandem C2 domains of syt-1 contribute to excitation-secretion coupling.


Assuntos
Domínios C2 , Cálcio/metabolismo , Neurônios/metabolismo , Sinaptotagmina I/metabolismo , Animais , Hipocampo/metabolismo , Hipocampo/fisiologia , Camundongos , Camundongos Knockout , Mutagênese Sítio-Dirigida , Neurônios/fisiologia , Ratos , Transmissão Sináptica , Sinaptotagmina I/química , Sinaptotagmina I/genética
15.
J Biol Chem ; 291(3): 1014-27, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26546679

RESUMO

The majority of biosynthetic secretory proteins initiate their journey through the endomembrane system from specific subdomains of the endoplasmic reticulum. At these locations, coated transport carriers are generated, with the Sar1 GTPase playing a critical role in membrane bending, recruitment of coat components, and nascent vesicle formation. How these events are appropriately coordinated remains poorly understood. Here, we demonstrate that Sar1 acts as the curvature-sensing component of the COPII coat complex and highlight the ability of Sar1 to bind more avidly to membranes of high curvature. Additionally, using an atomic force microscopy-based approach, we further show that the intrinsic GTPase activity of Sar1 is necessary for remodeling lipid bilayers. Consistent with this idea, Sar1-mediated membrane remodeling is dramatically accelerated in the presence of its guanine nucleotide-activating protein (GAP), Sec23-Sec24, and blocked upon addition of guanosine-5'-[(ß,γ)-imido]triphosphate, a poorly hydrolysable analog of GTP. Our results also indicate that Sar1 GTPase activity is stimulated by membranes that exhibit elevated curvature, potentially enabling Sar1 membrane scission activity to be spatially restricted to highly bent membranes that are characteristic of a bud neck. Taken together, our data support a stepwise model in which the amino-terminal amphipathic helix of GTP-bound Sar1 stably penetrates the endoplasmic reticulum membrane, promoting local membrane deformation. As membrane bending increases, Sar1 membrane binding is elevated, ultimately culminating in GTP hydrolysis, which may destabilize the bilayer sufficiently to facilitate membrane fission.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Biológicos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Substituição de Aminoácidos , Animais , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/efeitos dos fármacos , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/ultraestrutura , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/ultraestrutura , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Retículo Endoplasmático/ultraestrutura , Inibidores Enzimáticos/farmacologia , GTP Fosfo-Hidrolases/antagonistas & inibidores , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Guanilil Imidodifosfato/farmacologia , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/ultraestrutura , Microscopia de Força Atômica , Proteínas Monoméricas de Ligação ao GTP/antagonistas & inibidores , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação , Forma das Organelas/efeitos dos fármacos , Interferência de RNA , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas de Transporte Vesicular/antagonistas & inibidores , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo
16.
Nat Struct Mol Biol ; 23(1): 67-73, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26656855

RESUMO

During exocytosis, fusion pores form the first aqueous connection that allows escape of neurotransmitters and hormones from secretory vesicles. Although it is well established that SNARE proteins catalyze fusion, the structure and composition of fusion pores remain unknown. Here, we exploited the rigid framework and defined size of nanodiscs to interrogate the properties of reconstituted fusion pores, using the neurotransmitter glutamate as a content-mixing marker. Efficient Ca(2+)-stimulated bilayer fusion, and glutamate release, occurred with approximately two molecules of mouse synaptobrevin 2 reconstituted into ∼6-nm nanodiscs. The transmembrane domains of SNARE proteins assumed distinct roles in lipid mixing versus content release and were exposed to polar solvent during fusion. Additionally, tryptophan substitutions at specific positions in these transmembrane domains decreased glutamate flux. Together, these findings indicate that the fusion pore is a hybrid structure composed of both lipids and proteins.


Assuntos
Exocitose , Bicamadas Lipídicas/metabolismo , Fusão de Membrana , Proteínas SNARE/metabolismo , Vesículas Secretórias/química , Vesículas Secretórias/metabolismo , Animais , Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Camundongos
17.
Biochem Biophys Res Commun ; 464(1): 38-44, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26032502

RESUMO

ASIC and ENaC are co-expressed in various cell types, and there is evidence for a close association between them. Here, we used atomic force microscopy (AFM) to determine whether ASIC1a and ENaC subunits are able to form cross-clade hybrid ion channels. ASIC1a and ENaC could be co-isolated from detergent extracts of tsA 201 cells co-expressing the two subunits. Isolated proteins were incubated with antibodies against ENaC and Fab fragments against ASIC1a. AFM imaging revealed proteins that were decorated by both an antibody and a Fab fragment with an angle of ∼120° between them, indicating the formation of ASIC1a/ENaC heterotrimers.


Assuntos
Canais Iônicos Sensíveis a Ácido/química , Canais Epiteliais de Sódio/química , Epitopos/química , Proteínas Recombinantes de Fusão/química , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Anticorpos/química , Células CHO , Linhagem Celular Transformada , Cricetulus , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Epitopos/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Técnicas de Patch-Clamp , Multimerização Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
18.
Mol Metab ; 4(3): 199-209, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25737955

RESUMO

OBJECTIVE: Disruption of the genes encoding either seipin or 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2) causes severe congenital generalized lipodystrophy (CGL) in humans. However, the function of seipin in adipogenesis remains poorly defined. We demonstrated recently that seipin can bind the key adipogenic phosphatidic acid (PA) phosphatase lipin 1 and that seipin forms stable dodecamers. As AGPAT2 generates PA, the substrate for lipin 1, we investigated whether seipin might bind both enzymes of this lipid biosynthetic pathway, which is required for adipogenesis to occur. METHODS: We employed co-immunoprecipitation and immunofluorescence methods to determine whether seipin can interact with AGPAT2 and the consequences of this in developing adipocytes. Atomic force microscopy was used to determine whether these interactions involved direct association of the proteins and to define the molecular architecture of these complexes. RESULTS: Our data reveal that seipin can bind AGPAT2 during adipogenesis and that stabilizing this interaction during adipogenesis can increase the nuclear accumulation of PPARγ. Both AGPAT2 and lipin 1 can directly associate with seipin dodecamers, and a single seipin complex can simultaneously bind both AGPAT2 and lipin with a defined orientation. CONCLUSIONS: Our study provides the first direct molecular link between seipin and AGPAT2, two proteins whose disruption causes CGL. Moreover, it provides the first example of an interaction between seipin and another protein that causally influences a key aspect of adipogenesis. Together our data suggest that the critical role of seipin in adipogenesis may involve its capacity to juxtapose important regulators of this process in a multi-protein complex.

19.
Biophys J ; 108(1): 76-84, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25564854

RESUMO

The turnover of integral membrane proteins requires a specialized transport pathway mediated by components of the endosomal sorting complex required for transport (ESCRT) machinery. In most cases, entry into this pathway requires that cargoes undergo ubiquitin-modification, thereby facilitating their sequestration on endosomal membranes by specific, ubiquitin-binding ESCRT subunits. However, requirements underlying initial cargo recognition of mono-ubiquitinated cargos remain poorly defined. In this study, we determine the capability of each ESCRT complex that harbors a ubiquitin-binding domain to bind a reconstituted integral membrane cargo (VAMP2), which has been covalently linked to mono-ubiquitin. We demonstrate that ESCRT-0, but not ESCRT-I or ESCRT-II, is able to associate stably with the mono-ubiquitinated cargo within a lipid bilayer. Moreover, we show that the ubiquitin-binding domains in both Hrs and STAM must be intact to enable cargo binding. These results indicate that the two subunits of ESCRT-0 function together to bind and sequester cargoes for downstream sorting into intralumenal vesicles.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/química , Bicamadas Lipídicas/química , Ubiquitina/química , Proteína 2 Associada à Membrana da Vesícula/química , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Lipossomos/química , Camundongos , Microscopia de Força Atômica
20.
FEBS Lett ; 589(1): 89-93, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25436415

RESUMO

Several renal diseases involve mutations in the gene encoding uromodulin, the predominant protein in urine. We investigated the intracellular processing of wild-type uromodulin, and three mutants: p.V93_G97del/ins AASC; C155R; and C150S. A renal biopsy from a patient harboring the C155R mutation revealed intracellular protein accumulation. Wild-type uromodulin was efficiently trafficked to the cell surface in transfected tsA 201 cells, whereas the mutants were partially retained within the cell, and incompletely processed. Atomic force microscopy imaging revealed that the intracellular mutant proteins contained fibrillar structures similar to urinary uromodulin. We suggest that premature intracellular polymerization underlies the pathology of uromodulin diseases.


Assuntos
Doenças Genéticas Inatas/urina , Nefropatias/urina , Mutação de Sentido Incorreto , Agregação Patológica de Proteínas/urina , Uromodulina/urina , Substituição de Aminoácidos , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Células HEK293 , Humanos , Nefropatias/genética , Nefropatias/patologia , Masculino , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Transporte Proteico/genética , Uromodulina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA