Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 365(3): 602-613, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29643252

RESUMO

In the search for improved symptomatic treatment options for neurodegenerative and neuropsychiatric diseases, muscarinic acetylcholine M1 receptors (M1 mAChRs) have received significant attention. Drug development efforts have identified a number of novel ligands, some of which have advanced to the clinic. However, a significant issue for progressing these therapeutics is the lack of robust, translatable, and validated biomarkers. One valuable approach to assessing target engagement is to use positron emission tomography (PET) tracers. In this study we describe the pharmacological characterization of a selective M1 agonist amenable for in vivo tracer studies. We used a novel direct binding assay to identify nonradiolabeled ligands, including LSN3172176, with the favorable characteristics required for a PET tracer. In vitro functional and radioligand binding experiments revealed that LSN3172176 was a potent partial agonist (EC50 2.4-7.0 nM, Emax 43%-73%), displaying binding selectivity for M1 mAChRs (Kd = 1.5 nM) that was conserved across species (native tissue Kd = 1.02, 2.66, 8, and 1.03 at mouse, rat, monkey, and human, respectively). Overall selectivity of LSN3172176 appeared to be a product of potency and stabilization of the high-affinity state of the M1 receptor, relative to other mAChR subtypes (M1 > M2, M4, M5 > M3). In vivo, use of wild-type and mAChR knockout mice further supported the M1-preferring selectivity profile of LSN3172176 for the M1 receptor (78% reduction in cortical occupancy in M1 KO mice). These findings support the development of LSN3172176 as a potential PET tracer for assessment of M1 mAChR target engagement in the clinic and to further elucidate the function of M1 mAChRs in health and disease.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Cinética , Camundongos , Traçadores Radioativos , Ratos , Reprodutibilidade dos Testes
2.
J Med Chem ; 59(24): 10891-10916, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-27749056

RESUMO

The G protein-coupled receptor 40 (GPR40) also known as free fatty acid receptor 1 (FFAR1) is highly expressed in pancreatic, islet ß-cells and responds to endogenous fatty acids, resulting in amplification of insulin secretion only in the presence of elevated glucose levels. Hypothesis driven structural modifications to endogenous FFAs, focused on breaking planarity and reducing lipophilicity, led to the identification of spiropiperidine and tetrahydroquinoline acid derivatives as GPR40 agonists with unique pharmacology, selectivity, and pharmacokinetic properties. Compounds 1 (LY2881835), 2 (LY2922083), and 3 (LY2922470) demonstrated potent, efficacious, and durable dose-dependent reductions in glucose levels along with significant increases in insulin and GLP-1 secretion during preclinical testing. A clinical study with 3 administered to subjects with T2DM provided proof of concept of 3 as a potential glucose-lowering therapy. This manuscript summarizes the scientific rationale, medicinal chemistry, preclinical, and early development data of this new class of GPR40 agonists.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Descoberta de Drogas , Hipoglicemiantes/farmacologia , Piperidinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Compostos de Espiro/farmacologia , Animais , Relação Dose-Resposta a Droga , Teste de Tolerância a Glucose , Células HEK293 , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Ratos , Ratos Zucker , Compostos de Espiro/síntese química , Compostos de Espiro/química , Relação Estrutura-Atividade
3.
Am J Nucl Med Mol Imaging ; 4(1): 29-38, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24380043

RESUMO

Hydroxamic acid-based histone deacetylase inhibitors (HDACis) are a class of molecules with therapeutic potential currently reflected in the use of suberoylanilide hydroxamic acid (SAHA; Vorinostat) to treat cutaneous T-cell lymphomas (CTCL). HDACis may have utility beyond cancer therapy, as preclinical studies have ascribed HDAC inhibition as beneficial in areas such as heart disease, diabetes, depression, neurodegeneration, and other disorders of the central nervous system (CNS). However, little is known about the pharmacokinetics (PK) of hydroxamates, particularly with respect to CNS-penetration, distribution, and retention. To explore the rodent and non-human primate (NHP) brain permeability of hydroxamic acid-based HDAC inhibitors using positron emission tomography (PET), we modified the structures of belinostat (PXD101) and panobinostat (LBH-589) to incorporate carbon-11. We also labeled PCI 34051 through carbon isotope substitution. After characterizing the in vitro affinity and efficacy of these compounds across nine recombinant HDAC isoforms spanning Class I and Class II family members, we determined the brain uptake of each inhibitor. Each labeled compound has low uptake in brain tissue when administered intravenously to rodents and NHPs. In rodent studies, we observed that brain accumulation of the radiotracers were unaffected by the pre-administration of unlabeled inhibitors. Knowing that CNS-penetration may be desirable for both imaging applications and therapy, we explored whether a liquid chromatography, tandem mass spectrometry (LC-MS-MS) method to predict brain penetrance would be an appropriate method to pre-screen compounds (hydroxamic acid-based HDACi) prior to PET radiolabeling. LC-MS-MS data were indeed useful in identifying additional lead molecules to explore as PET imaging agents to visualize HDAC enzymes in vivo. However, HDACi brain penetrance predicted by LC-MS-MS did not strongly correlate with PET imaging results. This underscores the importance of in vivo PET imaging tools in characterizing putative CNS drug lead compounds and the continued need to discover effect PET tracers for neuroepigenetic imaging.

4.
Mol Cancer Res ; 3(4): 227-36, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15831676

RESUMO

Emerging evidence shows that the stromal cell-derived factor 1 (SDF-1)/CXCR4 interaction regulates multiple cell signaling pathways and a variety of cellular functions such as cell migration, proliferation, and survival. There is little information linking the cellular functions and individual signaling pathways mediated by SDF-1 and CXCR4 in human cancer cells. In this study, we have shown that human epitheloid carcinoma HeLa cells express functional CXCR4 by reverse transcription-PCR, immunofluorescent staining, and 125I-SDF-1alpha ligand binding analyses. The treatment of HeLa cells with recombinant SDF-1alpha results in time-dependent Akt and extracellular signal-regulated kinase 1/2 (ERK1/2) activations. The SDF-1alpha-induced Akt and ERK1/2 activations are CXCR4 dependent as confirmed by their total inhibition by T134, a CXCR4-specific peptide antagonist. Cell signaling analysis with pathway-specific inhibitors reveals that SDF-1alpha-induced Akt activation is not required for ERK1/2 activation and vice versa, indicating that activations of Akt and ERK1/2 occur independently. Functional analysis shows that SDF-1alpha induces a CXCR4-dependent migration of HeLa cells. The migration can be totally blocked by phosphoinositide 3-kinase inhibitors, wortmannin or LY294002, whereas mitogen-activated protein/ERK kinase inhibitors, PD98059 and U0126, have no significant effect on SDF-1alpha-induced migration, suggesting that Akt activation, but not ERK1/2 activation, is required for SDF-1alpha-induced migration of epitheloid carcinoma cells.


Assuntos
Movimento Celular/fisiologia , Quimiocinas CXC/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores CXCR4/metabolismo , Quimiocina CXCL12 , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Células HeLa , Humanos , Radioisótopos do Iodo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt , Receptores CXCR4/genética , Transdução de Sinais/fisiologia
5.
J Med Chem ; 47(16): 3934-7, 2004 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-15267232

RESUMO

Glycogen synthase kinase-3 (GSK3) is involved in signaling from the insulin receptor. Inhibitors of GSK3 are expected to effect lowering of plasma glucose similar to insulin, making GSK3 an attractive target for the treatment of type 2 diabetes. Herein we report the discovery of a series of potent and selective GSK3 inhibitors. Compounds 7-12 show oral activity in an in vivo model of type II diabetes, and 9 and 12 have desirable PK properties.


Assuntos
Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Imidazóis/síntese química , Piridinas/síntese química , Pirróis/síntese química , Administração Oral , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Glicogênio Sintase Quinase 3 beta , Humanos , Imidazóis/farmacocinética , Imidazóis/farmacologia , Piridinas/farmacocinética , Piridinas/farmacologia , Pirróis/farmacocinética , Pirróis/farmacologia , Ratos , Ratos Zucker
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA