Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Oncol ; 17(10): 2041-2055, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37341140

RESUMO

Liver X receptors (LXRs) are nuclear transcription factors important in the regulation of cholesterol transport, and glucose and fatty acid metabolism. The antiproliferative role of LXRs has been studied in a variety of malignancies and may represent a therapeutic opportunity in cancers lacking targeted therapies, such as triple-negative breast cancer. In this study, we investigated the impact of LXR agonists alone and in combination with carboplatin in preclinical models of breast cancer. In vitro experiments revealed a dose-dependent decrease in tumor cell proliferation in estrogen receptor-positive breast cancer cells, whereas LXR activation in vivo resulted in an increased growth inhibitory effect in a basal-like breast cancer model (in combination with carboplatin). Functional proteomic analysis identified differences in protein expression between responding and nonresponding models related to Akt activity, cell-cycle progression, and DNA repair. Furthermore, pathway analysis suggested that the LXR agonist in combination with carboplatin inhibits the activity of targets of E2F transcription factors and affects cholesterol homeostasis in basal-like breast cancer.


Assuntos
Neoplasias da Mama , Receptores Nucleares Órfãos , Humanos , Feminino , Receptores X do Fígado/metabolismo , Receptores Nucleares Órfãos/metabolismo , Neoplasias da Mama/patologia , Carboplatina/metabolismo , Proteômica , Colesterol/metabolismo , Fígado/patologia
2.
Front Oncol ; 13: 1040665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910663

RESUMO

Assessment of drug sensitivity in tumor tissue ex vivo may significantly contribute to functional diagnostics to guide personalized treatment of cancer. Tumor organoid- and explant-cultures have become attractive tools towards this goal, although culturing conditions for breast cancer (BC) tissue have been among the most challenging to develop. Validation of possibilities to detect concordant responses in individual tumors and their respective cultures ex vivo is still needed. Here we employed BC patient-derived xenografts (PDXs) with distinct drug sensitivity, to evaluate different conditions for tissue dissociation, culturing and monitoring of treatment efficacy ex vivo, aiming to recapitulate the in vivo drug responses. The common challenge of discriminating between tumor and normal cells in the cultured tissue was also addressed. Following conventional enzymatic dissociation of BC tissue, the tumor cells stayed within the non-disrupted tissue fragments, while the single cells represented mostly normal host cells. By culturing such fragments as explants, viable tumor tissue could be maintained and treated ex vivo, providing representative indications on efficacy of the tested treatment. Thus, drug sensitivity profiles, including acquired chemoresistance seen in the PDXs, were recapitulated in the respective explants. To detect the concordant responses, however, the effect monitoring had to be harmonized with the characteristics of the cultured tissue. In conclusion, we present the feasibility of BC explants ex vivo to capture differences in drug sensitivity of individual tumors. The established protocols will aid in setting up an analogous platform for BC patient biopsies with the aim to facilitate functional precision medicine.

3.
Cancer Lett ; 439: 1-13, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30240588

RESUMO

Cancer cells' phenotypic plasticity, promoted by stromal cells, contributes to intra-tumoral heterogeneity and affects response to therapy. We have disclosed an association between fibroblast-stimulated phenotype switching and resistance to the clinically used BRAF inhibitor (BRAFi) vemurafenib in malignant melanoma, revealing a challenge in targeting the fibroblast-induced phenotype. Here we compared molecular features and drug sensitivity in melanoma cells grown as co-cultures with fibroblasts versus mono-cultures. In the presence of fibroblasts, melanoma cells switched to the dedifferentiated, mesenchymal-like, inflammatory phenotype that showed reduced sensitivity to the most of 275 tested cancer drugs. Fibroblasts, however, sensitized melanoma cells to PI3K inhibitors (PI3Ki) and particularly the inhibitor of GSK3, AR-A014418 (GSK3i), that showed superior efficacy in co-cultures. The proteome changes induced by the BRAFi + GSK3i combination mimicked changes induced by BRAFi in mono-cultures, and GSK3i in co-cultures. This suggests that the single drug drives the response to the combination treatment, depending on fibroblast presence or absence, consequently, phenotype. We propose that the BRAFi and GSK3i (or PI3Ki) combination exemplifies phenotype-specific combinatorial treatment that should be beneficial in phenotypically heterogeneous tumors rich in stromal interactions.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Melanoma/metabolismo , Apoptose/efeitos dos fármacos , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Melanoma/genética , Melanoma/patologia , Fenótipo , Inibidores de Proteínas Quinases/farmacologia
4.
Breast Cancer Res Treat ; 162(1): 127-137, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28058579

RESUMO

PURPOSE: Prognostic factors are useful in order to identify early-stage breast cancer patients who might benefit from adjuvant treatment. The metastasis-promoting protein S100A4 has previously been associated with poor prognosis in breast cancer patients. The protein is expressed in diverse subcellular compartments, including the cytoplasm, extracellular space, and nucleus. Nuclear expression is an independent predictor of poor outcome in several cancer types, but the significance of subcellular expression has not yet been assessed in breast cancer. METHODS: Nuclear and cytoplasmic expression of S100A4 was assessed by immunohistochemistry in prospectively collected tumor samples from early-stage breast cancer patients using tissue microarrays. RESULTS: In patients not receiving adjuvant systemic therapy, nuclear or cytoplasmic expression was found in 44/291 tumors (15%). Expression of either nuclear or cytoplasmic S100A4 was associated with histological grade III, triple-negative subtype, and Ki-67-expression. Patients with S100A4-positive tumors had inferior metastasis-free and overall survival compared to S100A4-negative. When expression was analyzed separately, nuclear S100A4 was a significant predictor of outcome, while cytoplasmic was not. In patients who received adjuvant treatment 23/300 tumors (8%) were S100A4-positive, but no tumors displayed nuclear staining alone. S100A4-expression was strongly associated with histological grade III and triple-negative subtype. Although not significant, metastasis-free and overall survival was numerically reduced in patients with S100A4-positive tumors. CONCLUSION: S100A4-expression was associated with poor outcome in early-stage breast cancer, but the low percentage of positive tumors and the modest survival differences imply that the clinical utility in selection of patients for adjuvant treatment is limited.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Espaço Intracelular , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Transporte Proteico , Proteína A4 de Ligação a Cálcio da Família S100/genética , Análise Serial de Tecidos
5.
Tumour Biol ; 37(9): 12133-12140, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27220319

RESUMO

Wee1 is a nuclear kinase regulating cell cycle progression, and has emerged as a promising therapeutic target in cancer. Expression of Wee1 has been associated with poor outcome in certain tumor types, but the prognostic impact and clinical significance in colorectal cancer is unknown. The expression of Wee1 was examined by immunohistochemistry in primary colorectal carcinomas from a prospectively collected patient cohort, and associations with clinicopathological parameters and outcome were investigated. Cell culture experiments were performed using the cell lines RKO and SW620, and the relationship with the metastasis-promoting protein S100A4 was investigated. Nuclear expression was detected in 229 of the 258 tumors analyzed (89 %). Wee1 staining was associated with low pT stage, but no other significant associations with demographic or histopathological variables were found. Moderate Wee1 staining intensity was a predictor of favorable metastasis-free and overall survival compared to strong intensity and no or weak staining. The fraction of positive cells was not a prognostic factor in the present cohort. Inhibition of Wee1 expression using siRNA or treatment with the Wee1 inhibitor MK-1775 reduced expression of the metastasis-promoting protein S100A4, but no relationship between Wee1 and S100A4 was found in the patient samples. In conclusion, Wee1 is highly expressed in primary colorectal carcinomas, but few relevant associations with clinicopathological parameters or outcome were found. The lack of clinical significance of Wee1 expression could indicate that other tumor types might be better suited for further development of Wee1 inhibitors.


Assuntos
Proteínas de Ciclo Celular/análise , Neoplasias Colorretais/química , Proteínas Nucleares/análise , Proteínas Tirosina Quinases/análise , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Humanos , Imuno-Histoquímica , Estadiamento de Neoplasias , Proteínas Nucleares/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Pirimidinonas , Proteína A4 de Ligação a Cálcio da Família S100/análise
6.
Clin Exp Metastasis ; 32(8): 755-67, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26349943

RESUMO

S100A4 promotes metastasis in several types of cancer, but the involved molecular mechanisms are still incompletely described. The protein is associated with a wide variety of biological functions and it locates to different subcellular compartments, including nuclei, cytoplasm and extracellular space. Nuclear expression of S100A4 has been associated with more advanced disease stage as well as poor outcome in colorectal cancer (CRC). The present study was initiated to investigate the nuclear function of S100A4 and thereby unravel potential biological mechanisms linking nuclear expression to a more aggressive phenotype. CRC cell lines show heterogeneity in nuclear S100A4 expression and preliminary experiments revealed cells in G2/M to have increased nuclear accumulation compared to G1 and S cells, respectively. Synchronization experiments validated nuclear S100A4 expression to be most prominent in the G2/M phase, but manipulating nuclear levels of S100A4 using lentiviral modified cells failed to induce changes in cell cycle distribution and proliferation. Proximity ligation assay did, however, demonstrate proximity between S100A4 and cyclin B1 in vitro, while confocal microscopy showed S100A4 to localize to areas corresponding to centrosomes in mitotic cells prior to chromosome segregation. This might indicate a novel and uncharacterized function of the metastasis-associated protein in CRC cells.


Assuntos
Núcleo Celular/química , Centrossomo/fisiologia , Neoplasias Colorretais/patologia , Ciclina B1/fisiologia , Proteínas S100/fisiologia , Animais , Divisão Celular , Linhagem Celular Tumoral , Fase G2 , Humanos , Camundongos , Proteína A4 de Ligação a Cálcio da Família S100 , Proteína Supressora de Tumor p53/fisiologia
7.
Eur J Cancer ; 51(1): 9-17, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25466510

RESUMO

BACKGROUND: The cysteine proteinase legumain is highly expressed in cancer. Legumain is a potential biomarker and has been suggested to be utilised for prodrug activation in cancer therapy. However, to define the suitability of legumain for such purposes, detailed knowledge of cell type-specific and subcellular expression together with proteolytic activity patterns in tumour tissue is necessary. METHODS: Expression of legumain was examined in a panel of 277 primary tumours from colorectal cancer (CRC) patients using immunohistochemistry. Tumour (cytoplasmic diffuse, cytoplasmic granulated, and nuclear) and stromal cell expression of legumain was quantified, and associations with clinicopathological parameters and outcome were analysed. Additionally, normal colon tissue and spontaneous mouse tumours were stained for legumain. RESULTS: Legumain was highly expressed in tumour and stromal cells. Nuclear legumain was detected in 30% of the tumours. In colon cancer patients, high legumain expression was associated with overall and metastasis-free survival (OS; MFS) in uni- and multivariate analysis. Nuclear legumain was associated with poor OS, but not MFS in the colon cancer subgroup. Cytoplasmic granulated or diffuse expression was not associated with OS or MFS. Normal epithelial cells exhibited granulated legumain mainly at the apical pole, and legumain was highly expressed in CD68 positive macrophages. CONCLUSIONS: Legumain is a highly expressed proteinase in CRC and associated with poor outcome in colon cancer. Diversified localisation of legumain expression in tumour and stromal cells suggests multiple functions in CRC, representing both a challenge and an opportunity for use in therapeutic targeting.


Assuntos
Neoplasias Colorretais/terapia , Cisteína Endopeptidases/metabolismo , Cisteína Proteases/metabolismo , Estudos de Coortes , Neoplasias Colorretais/patologia , Cisteína Endopeptidases/efeitos adversos , Cisteína Proteases/efeitos adversos , Feminino , Humanos , Masculino , Pró-Fármacos , Prognóstico
8.
Stem Cells Dev ; 23(19): 2377-89, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24857590

RESUMO

Human mesenchymal stromal cells (hMSCs) show great potential for clinical and experimental use due to their capacity to self-renew and differentiate into multiple mesenchymal lineages. However, disadvantages of primary cultures of hMSCs are the limited in vitro lifespan, and the variable properties of cells from different donors and over time in culture. In this article, we describe the generation of a telomerase-immortalized nontumorigenic human bone marrow-derived stromal mesenchymal cell line, and its detailed characterization after long-term culturing (up to 155 population doublings). The resulting cell line, iMSC#3, maintained a fibroblast-like phenotype comparable to early passages of primary hMSCs, and showed no major differences from hMSCs regarding surface marker expression. Furthermore, iMSC#3 had a normal karyotype, and high-resolution array comparative genomic hybridization confirmed normal copy numbers. The gene expression profiles of immortalized and primary hMSCs were also similar, whereas the corresponding DNA methylation profiles were more diverse. The cells also had proliferation characteristics comparable to primary hMSCs and maintained the capacity to differentiate into osteoblasts and adipocytes. A detailed characterization of the mRNA and microRNA transcriptomes during adipocyte differentiation also showed that the iMSC#3 recapitulates this process at the molecular level. In summary, the immortalized mesenchymal cells represent a valuable model system that can be used for studies of candidate genes and their role in differentiation or oncogenic transformation, and basic studies of mesenchymal biology.


Assuntos
Adipócitos/citologia , Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células-Tronco Mesenquimais/citologia , Linhagem Celular , Transformação Celular Neoplásica/metabolismo , Hibridização Genômica Comparativa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA