Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 27(4): 1089-1093, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28089701

RESUMO

A series of potent and novel acylsulfonamide-bearing triazines were synthesized and the structure-activity relationships (SARs) as HCV entry inhibitors were evaluated. This acylsulfonamide series was derived from an early lead, 4-(4-(1-(4-chlorophenyl)cyclopropylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-ylamino)benzoic acid wherein the carboxylic acid was replaced with an acylsulfonamide moiety. This structural modification provided a class of compounds which projected an additional vector off the terminus of the acylsulfonamide functionality as a means to drive activity. This effort led to the discovery of potent analogues within this series that demonstrated sub-nanomolar EC50 values in the HCV pseudotype particle (HCVpp) assay.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Fusão de Membrana/efeitos dos fármacos , Triazinas/farmacologia , Animais , Antivirais/química , Antivirais/farmacocinética , Hepacivirus/fisiologia , Humanos , Ratos , Relação Estrutura-Atividade , Triazinas/química , Triazinas/farmacocinética
2.
PLoS One ; 10(3): e0121734, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826356

RESUMO

Peginterferon lambda-1a (Lambda), a type III interferon (IFN), acts through a unique receptor complex with limited cellular expression outside the liver which may result in a differentiated tolerability profile compared to peginterferon alfa (alfa). In Phase 2b clinical studies, Lambda administered in combination with ribavirin (RBV) was efficacious in patients with hepatitis C virus (HCV) infection representing genotypes 1 through 4, and was associated with more rapid declines in HCV RNA compared to alfa plus RBV. To gain insights into potential mechanisms for this finding, we investigated the effects of HCV replication on IFN signaling in primary human hepatocytes (PHH) and in induced hepatocyte-like cells (iHLCs). HCV infection resulted in rapid down-regulation of the type I IFN-α receptor subunit 1 (IFNAR1) transcript in hepatocytes while the transcriptional level of the unique IFN-λ receptor subunit IL28RA was transiently increased. In line with this observation, IFN signaling was selectively impaired in infected cells upon stimulation with alfa but not in response to Lambda. Importantly, in contrast to alfa, Lambda was able to induce IFN-stimulated gene (ISG) expression in HCV-infected hepatocytes, reflecting the onset of innate responses. Moreover, global transcriptome analysis in hepatocytes indicated that Lambda stimulation prolonged the expression of various ISGs that are potentially beneficial to antiviral defense mechanisms. Collectively, these observed effects of HCV infection on IFN receptor expression and signaling within infected hepatocytes provide a possible explanation for the more pronounced early virologic responses observed in patients treated with Lambda compared to alfa.


Assuntos
Hepacivirus/patogenicidade , Hepatócitos/virologia , Interferon Tipo I/metabolismo , Transdução de Sinais , Células Cultivadas , Regulação para Baixo , Hepacivirus/genética , Hepacivirus/fisiologia , Humanos , RNA Viral/análise , Receptor de Interferon alfa e beta/genética , Replicação Viral
3.
J Antimicrob Chemother ; 69(3): 573-81, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24128669

RESUMO

OBJECTIVES: In an 8 day monotherapy study of subjects infected with HIV-1 (subtype B) (NCT01009814), BMS-626529 (an attachment inhibitor that binds to HIV-1 envelope glycoprotein gp120), administered as the prodrug BMS-663068, produced substantial declines in plasma HIV-1 RNA. However, large variability in susceptibility to BMS-626529 was noted and virus with low susceptibility was less likely to be suppressed by BMS-663068 administration. The current analysis sought to investigate the genotypic correlates of susceptibility to BMS-626529. METHODS: In vitro selection experiments, evaluation of clinical samples of subtype B from the monotherapy study and evaluation of intrinsically resistant subtype AE viruses were conducted. Reverse genetics was used to identify key substitutions in envelope clones responsible for reduced susceptibility. RESULTS: An M426L or S375M change were the major substitutions associated with reductions in susceptibility to BMS-626529 in baseline samples of subtype B viruses from the monotherapy study, with M434I and M475I contributing to a lesser extent. Class resistance in subtype AE viruses was mapped to 375H and 475I substitutions, found in the vast majority of these viruses. Analysis of multiple envelope clones from infected subjects showed higher intrasubject variability in susceptibility to BMS-626529 compared with other classes of entry inhibitors. CONCLUSIONS: These data define key genotypic substitutions in HIV-1 gp120 that could confer phenotypic resistance to BMS-626529.


Assuntos
Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral , Proteína gp120 do Envelope de HIV/genética , HIV-1/efeitos dos fármacos , Organofosfatos/farmacologia , Piperazinas/farmacologia , Pró-Fármacos/farmacologia , Triazóis/farmacologia , Substituição de Aminoácidos , Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/genética , Humanos , Dados de Sequência Molecular , Organofosfatos/uso terapêutico , Piperazinas/uso terapêutico , Pró-Fármacos/uso terapêutico , Genética Reversa , Análise de Sequência de DNA , Triazóis/uso terapêutico
4.
J Med Chem ; 56(4): 1656-69, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23360431

RESUMO

A series of highly potent HIV-1 attachment inhibitors with 4-fluoro-6-azaindole core heterocycles that target the viral envelope protein gp120 has been prepared. Substitution in the 7-position of the azaindole core with amides (12a,b), C-linked heterocycles (12c-l), and N-linked heterocycles (12m-u) provided compounds with subnanomolar potency in a pseudotype infectivity assay and good pharmacokinetic profiles in vivo. A predictive model was developed from the initial SAR in which the potency of the analogues correlated with the ability of the substituent in the 7-position of the azaindole to adopt a coplanar conformation by either forming internal hydrogen bonds or avoiding repulsive substitution patterns. 1-(4-Benzoylpiperazin-1-yl)-2-(4-fluoro-7-[1,2,3]triazol-1-yl-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-585248, 12m) exhibited much improved in vitro potency and pharmacokinetic properties than the previous clinical candidate BMS-488043 (1). The predicted low clearance in humans, modest protein binding, and good potency in the presence of 40% human serum for 12m led to its selection for human clinical studies.


Assuntos
Fármacos Anti-HIV/síntese química , HIV-1/efeitos dos fármacos , Indóis/síntese química , Piperazinas/síntese química , Piridinas/síntese química , Pirróis/síntese química , Triazinas/síntese química , Triazóis/síntese química , Animais , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/farmacologia , Células CACO-2 , Permeabilidade da Membrana Celular , Cristalografia por Raios X , HIV-1/fisiologia , Humanos , Indóis/farmacocinética , Indóis/farmacologia , Microssomos Hepáticos/metabolismo , Piperazinas/farmacocinética , Piperazinas/farmacologia , Piridinas/farmacocinética , Piridinas/farmacologia , Pirróis/farmacocinética , Pirróis/farmacologia , Teoria Quântica , Ratos , Relação Estrutura-Atividade , Triazinas/farmacocinética , Triazinas/farmacologia , Triazóis/farmacocinética , Triazóis/farmacologia , Ligação Viral/efeitos dos fármacos
5.
Bioorg Med Chem Lett ; 23(1): 218-22, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23206859

RESUMO

A series of HIV-1 attachment inhibitors containing a 4,6-diazaindole core were examined in an effort to identify a compound which improved upon the potency and oral exposure of BMS-488043 (2). BMS-488043 (2) is a 6-azaindole-based HIV-1 attachment inhibitor which established proof-of-concept for this mechanism in human clinical studies but required high doses and concomitant administration of a high fat meal to achieve efficacious exposures. Based on previous studies in indole and azaindole scaffolds, SAR investigation was concentrated around the key 7-position in the 4,6-diazaindole series and led to the discovery of molecules with 5- to 20-fold increases in potency and three- to seven-fold increases in exposure over 2 in a rat PK studies.


Assuntos
Fármacos Anti-HIV/química , Compostos Aza/química , HIV-1/metabolismo , Indóis/química , Administração Oral , Animais , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/farmacocinética , Avaliação Pré-Clínica de Medicamentos , HIV-1/efeitos dos fármacos , Meia-Vida , Humanos , Piperazinas/química , Piperazinas/farmacocinética , Ácido Pirúvico , Ratos , Relação Estrutura-Atividade , Ligação Viral/efeitos dos fármacos
6.
Bioorg Med Chem Lett ; 23(1): 209-12, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23200244

RESUMO

7-(2H-Tetrazol-5-yl)-1H-indole 3 was found to be a potent inhibitor of HIV-1 attachment but the compound lacked oral bioavailability in rats. The cause of the low exposure was believed to be poor absorption attributed to the acidic nature of the tetrazole moiety and, in an effort to address this liability, three more lipohilic tetrazole analogs, N-acetoxymethyl 4, N-pivaloyloxymethyl 5, and N-methyl 6, were evaluated as potential oral prodrugs in rats. Prodrug 5 was ineffective in improving the plasma concentration of 3 in vivo but compound 4 provided a 15-fold enhancement of the plasma concentration of 3. Most interestingly, oral dosing of analog 6 afforded a substantial increase in the plasma concentration of the parent in rats when compared to dosing of parent. This represents a novel example of a methyl tetrazole that acts as a prodrug for a free NH tetrazole-containing compound.


Assuntos
Fármacos Anti-HIV/química , HIV-1/metabolismo , Pró-Fármacos/química , Tetrazóis/química , Administração Oral , Animais , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/farmacocinética , HIV-1/efeitos dos fármacos , Meia-Vida , Humanos , Pró-Fármacos/síntese química , Pró-Fármacos/farmacocinética , Ratos , Relação Estrutura-Atividade , Tetrazóis/síntese química , Tetrazóis/farmacocinética , Ligação Viral/efeitos dos fármacos
7.
Bioorg Med Chem Lett ; 23(1): 198-202, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23200252

RESUMO

A series of substituted carboxamides at the indole C7 position of the previously described 4-fluoro-substituted indole HIV-1 attachment inhibitor 1 was synthesized and the SAR delineated. Heteroaryl carboxamide inhibitors that exhibited pM potency in the primary cell-based assay against a pseudotype virus expressing a JRFL envelope were identified. The simple methyl amide analog 4 displayed a promising in vitro profile, with its favorable HLM stability and membrane permeability translating into favorable pharmacokinetic properties in preclinical species.


Assuntos
Amidas/química , Fármacos Anti-HIV/química , HIV-1/metabolismo , Indóis/química , Amidas/síntese química , Amidas/farmacocinética , Animais , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/farmacocinética , Disponibilidade Biológica , Células CACO-2 , Permeabilidade da Membrana Celular/efeitos dos fármacos , Cristalografia por Raios X , Cães , HIV-1/efeitos dos fármacos , Meia-Vida , Haplorrinos , Humanos , Microssomos Hepáticos/metabolismo , Conformação Molecular , Ratos , Relação Estrutura-Atividade , Ligação Viral/efeitos dos fármacos
8.
PLoS One ; 7(8): e42609, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22880053

RESUMO

The recent development of a Hepatitis C virus (HCV) infectious virus cell culture model system has facilitated the development of whole-virus screening assays which can be used to interrogate the entire virus life cycle. Here, we describe the development of an HCV growth assay capable of identifying inhibitors against all stages of the virus life cycle with assay throughput suitable for rapid screening of large-scale chemical libraries. Novel features include, 1) the use of an efficiently-spreading, full-length, intergenotypic chimeric reporter virus with genotype 1 structural proteins, 2) a homogenous assay format compatible with miniaturization and automated liquid-handling, and 3) flexible assay end-points using either chemiluminescence (high-throughput screening) or Cellomics ArrayScan™ technology (high-content screening). The assay was validated using known HCV antivirals and through a large-scale, high-throughput screening campaign that identified novel and selective entry, replication and late-stage inhibitors. Selection and characterization of resistant viruses provided information regarding inhibitor target and mechanism. Leveraging results from this robust whole-virus assay represents a critical first step towards identifying inhibitors of novel targets to broaden the spectrum of antivirals for the treatment of HCV.


Assuntos
Antivirais/análise , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/crescimento & desenvolvimento , Ensaios de Triagem em Larga Escala/métodos , Farmacorresistência Viral/efeitos dos fármacos , Genoma Viral/genética , Hepacivirus/genética , Humanos , Reprodutibilidade dos Testes , Replicação Viral/efeitos dos fármacos
9.
Antimicrob Agents Chemother ; 56(7): 3498-507, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22547625

RESUMO

BMS-663068 is the phosphonooxymethyl prodrug of BMS-626529, a novel small-molecule attachment inhibitor that targets HIV-1 gp120 and prevents its binding to CD4(+) T cells. The activity of BMS-626529 is virus dependent, due to heterogeneity within gp120. In order to better understand the anti-HIV-1 spectrum of BMS-626529 against HIV-1, in vitro activities against a wide variety of laboratory strains and clinical isolates were determined. BMS-626529 had half-maximal effective concentration (EC(50)) values of <10 nM against the vast majority of viral isolates; however, susceptibility varied by >6 log(10), with half-maximal effective concentration values in the low pM range against the most susceptible viruses. The in vitro antiviral activity of BMS-626529 was generally not associated with either tropism or subtype, with few exceptions. Measurement of the binding affinity of BMS-626529 for purified gp120 suggests that a contributory factor to its inhibitory potency may be a relatively long dissociative half-life. Finally, in two-drug combination studies, BMS-626529 demonstrated additive or synergistic interactions with antiretroviral drugs of different mechanistic classes. These results suggest that BMS-626529 should be active against the majority of HIV-1 viruses and support the continued clinical development of the compound.


Assuntos
Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/química , Células Cultivadas , Células HCT116 , HIV/efeitos dos fármacos , HIV/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Células HeLa , Células Hep G2 , Humanos
10.
Antimicrob Agents Chemother ; 55(2): 729-37, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21078948

RESUMO

Attachment inhibitors (AI) are a novel class of HIV-1 antivirals, with little information available on clinical resistance. BMS-488043 is an orally bioavailable AI that binds to gp120 of HIV-1 and abrogates its binding to CD4(+) lymphocytes. A clinical proof-of-concept study of the AI BMS-488043, administered as monotherapy for 8 days, demonstrated significant viral load reductions. In order to examine the effects of AI monotherapy on HIV-1 sensitivity, phenotypic sensitivity assessment of baseline and postdosing (day 8) samples was performed. These analyses revealed that four subjects had emergent phenotypic resistance (a 50% effective concentration [EC(50)] >10-fold greater than the baseline value) and four had high baseline EC(50)s (>200 nM). Population sequencing and sequence determination of cloned envelope genes uncovered five gp120 mutations at four loci (V68A, L116I, S375I/N, and M426L) associated with BMS-488043 resistance. Substitution at the 375 locus, located near the CD4 binding pocket, was the most common (maintained in 5/8 subjects at day 8). The five substitutions were evaluated for their effects on AI sensitivity through reverse genetics in functional envelopes, confirming their role in decreasing sensitivity to the drug. Additional analyses revealed that these substitutions did not alter sensitivity to other HIV-1 entry inhibitors. Thus, our studies demonstrate that although the majority of the subjects' viruses maintained sensitivity to BMS-488043, substitutions can be selected that decrease HIV-1 susceptibility to the AI. Most importantly, the substitutions described here are not associated with resistance to other approved antiretrovirals, and therefore, attachment inhibitors could complement the current arsenal of anti-HIV agents.


Assuntos
Farmacorresistência Viral , Inibidores da Fusão de HIV/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Piperazinas/farmacologia , Sequência de Aminoácidos , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Antígenos CD4/metabolismo , Relação Dose-Resposta a Droga , Método Duplo-Cego , Esquema de Medicação , Proteína gp120 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/administração & dosagem , Inibidores da Fusão de HIV/uso terapêutico , Infecções por HIV/virologia , HIV-1/genética , Humanos , Indóis , Testes de Sensibilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular , Piperazinas/administração & dosagem , Piperazinas/uso terapêutico , Reação em Cadeia da Polimerase , Ácido Pirúvico , Análise de Sequência de DNA , Resultado do Tratamento
11.
PLoS Pathog ; 6(9): e1001086, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20838466

RESUMO

Small molecule inhibitors of hepatitis C virus (HCV) are being developed to complement or replace treatments with pegylated interferons and ribavirin, which have poor response rates and significant side effects. Resistance to these inhibitors emerges rapidly in the clinic, suggesting that successful therapy will involve combination therapy with multiple inhibitors of different targets. The entry process of HCV into hepatocytes represents another series of potential targets for therapeutic intervention, involving viral structural proteins that have not been extensively explored due to experimental limitations. To discover HCV entry inhibitors, we utilized HCV pseudoparticles (HCVpp) incorporating E1-E2 envelope proteins from a genotype 1b clinical isolate. Screening of a small molecule library identified a potent HCV-specific triazine inhibitor, EI-1. A series of HCVpp with E1-E2 sequences from various HCV isolates was used to show activity against all genotype 1a and 1b HCVpp tested, with median EC50 values of 0.134 and 0.027 µM, respectively. Time-of-addition experiments demonstrated a block in HCVpp entry, downstream of initial attachment to the cell surface, and prior to or concomitant with bafilomycin inhibition of endosomal acidification. EI-1 was equally active against cell-culture adapted HCV (HCVcc), blocking both cell-free entry and cell-to-cell transmission of virus. HCVcc with high-level resistance to EI-1 was selected by sequential passage in the presence of inhibitor, and resistance was shown to be conferred by changes to residue 719 in the carboxy-terminal transmembrane anchor region of E2, implicating this envelope protein in EI-1 susceptibility. Combinations of EI-1 with interferon, or inhibitors of NS3 or NS5A, resulted in additive to synergistic activity. These results suggest that inhibitors of HCV entry could be added to replication inhibitors and interferons already in development.


Assuntos
Antivirais/uso terapêutico , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Hepatócitos/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/metabolismo , Internalização do Vírus/efeitos dos fármacos , Sequência de Aminoácidos , Antígenos CD/genética , Antígenos CD/metabolismo , Antivirais/isolamento & purificação , Células Cultivadas , Farmacorresistência Viral , Sinergismo Farmacológico , Hepacivirus/isolamento & purificação , Hepacivirus/metabolismo , Hepatite C/genética , Hepatite C/virologia , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Interferons/uso terapêutico , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Bibliotecas de Moléculas Pequenas/análise , Tetraspanina 28 , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
12.
J Med Chem ; 52(23): 7778-87, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19769332

RESUMO

Azaindole derivatives derived from the screening lead 1-(4-benzoylpiperazin-1-yl)-2-(1H-indol-3-yl)ethane-1,2-dione (1) were prepared and characterized to assess their potential as inhibitors of HIV-1 attachment. Systematic replacement of each of the unfused carbon atoms in the phenyl ring of the indole moiety by a nitrogen atom provided four different azaindole derivatives that displayed a clear SAR for antiviral activity and all of which displayed marked improvements in pharmaceutical properties. Optimization of these azaindole leads resulted in the identification of two compounds that were advanced to clinical studies: (R)-1-(4-benzoyl-2-methylpiperazin-1-yl)-2-(4-methoxy-1H-pyrrolo[2,3-b]pyridin-3-yl)ethane-1,2-dione (BMS-377806, 3) and 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-488043, 4). In a preliminary clinical study, 4 administered as monotherapy for 8 days, reduced viremia in HIV-1-infected subjects, providing proof of concept for this mechanistic class.


Assuntos
Fármacos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Indóis/química , Piperazinas/farmacologia , Ligação Viral/efeitos dos fármacos , Animais , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/uso terapêutico , Linhagem Celular , Descoberta de Drogas , Humanos , Modelos Moleculares , Conformação Molecular , Piperazinas/química , Piperazinas/farmacocinética , Piperazinas/uso terapêutico , Ácido Pirúvico , Ratos , Reprodutibilidade dos Testes
13.
Hepatology ; 49(5): 1503-14, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19280622

RESUMO

UNLABELLED: Patients with chronic hepatitis B virus (HBV) infection who develop antiviral resistance lose benefits of therapy and may be predisposed to further resistance. Entecavir (ETV) resistance (ETVr) results from HBV reverse transcriptase substitutions at positions T184, S202, or M250, which emerge in the presence of lamivudine (LVD) resistance substitutions M204I/V +/- L180M. Here, we summarize results from comprehensive resistance monitoring of patients with HBV who were continuously treated with ETV for up to 5 years. Monitoring included genotypic analysis of isolates from all patients at baseline and when HBV DNA was detectable by polymerase chain reaction (> or = 300 copies/mL) from Years 1 through 5. In addition, genotyping was performed on isolates from patients experiencing virologic breakthrough (> or = 1 log(10) rise in HBV DNA). In vitro phenotypic ETV susceptibility was determined for virologic breakthrough isolates, and for HBV containing novel substitutions emerging during treatment. The results over 5 years of therapy showed that in nucleoside-naïve patients, the cumulative probability of genotypic ETVr and genotypic ETVr associated with virologic breakthrough was 1.2% and 0.8%, respectively. In contrast, a reduced barrier to resistance was observed in LVD-refractory patients, as the LVD resistance substitutions, a partial requirement for ETVr, preexist, resulting in a 5-year cumulative probability of genotypic ETVr and genotypic ETVr associated with breakthrough of 51% and 43%, respectively. Importantly, only four patients who achieved < 300 copies/mL HBV DNA subsequently developed ETVr. CONCLUSION: Long-term monitoring showed low rates of resistance in nucleoside-naïve patients during 5 years of ETV therapy, corresponding with potent viral suppression and a high genetic barrier to resistance. These findings support ETV as a primary therapy that enables prolonged treatment with potent viral suppression and minimal resistance.


Assuntos
Antivirais/uso terapêutico , Farmacorresistência Viral Múltipla , Guanina/análogos & derivados , Hepatite B Crônica/tratamento farmacológico , Lamivudina/uso terapêutico , Substituição de Aminoácidos , Seguimentos , Guanina/uso terapêutico , Vírus da Hepatite B/genética , Humanos , Vigilância da População , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Tempo
14.
Hepatology ; 47(5): 1473-82, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18435459

RESUMO

UNLABELLED: Virologic resistance emerging during entecavir (ETV) therapy for hepatitis B virus (HBV) requires three substitutions in the viral reverse transcriptase (RT), signifying a high barrier to resistance. Two of these substitutions are associated with lamivudine resistance (LVDr) in the tyrosine-methionine-aspartate-aspartate (YMDD) motif (rtM204V and rtL180M), whereas the other occurs at one or more positions specifically associated with ETV resistance (ETVr): rtT184, rtS202, or rtM250. Although a variety of substitutions at these primary ETVr positions arise during ETV therapy, only a subset give rise to clinical virologic breakthrough. To determine the phenotypic impact of observed clinical and potential new ETVr substitutions, a comprehensive panel of clones containing every possible amino acid at the three primary ETVr positions in LVDr HBV was constructed and analyzed in vitro. A range of replication capacities was observed for the panel, but none of the mutations rescued replication of the LVDr mutant to the wild-type level. More clones with residue rtS202 substitutions were severely impaired than those at rtT184 or rtM250. A wide variety of ETV susceptibilities was observed, ranging from approximately eight-fold (no increase over the LVDr parent) to greater than 400-fold over the wild-type. A correlation was identified between clinically observed substitutions and those displaying higher in vitro replication and resistance, especially those from virologic breakthrough patients. CONCLUSION: The high number of tolerated and resistant ETVr substitutions is consistent with models predicting that the mechanism for ETVr is through enhancement of LVDr changes in the RT deoxyribonucleotide triphosphate (dNTP)-binding pocket.


Assuntos
Substituição de Aminoácidos , Antivirais/farmacologia , Guanina/análogos & derivados , Vírus da Hepatite B/enzimologia , DNA Polimerase Dirigida por RNA/genética , Substituição de Aminoácidos/efeitos dos fármacos , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Farmacorresistência Viral , Ensaio de Imunoadsorção Enzimática , Guanina/farmacologia , Antígenos de Superfície da Hepatite B/efeitos dos fármacos , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/efeitos dos fármacos , Humanos , Neoplasias Hepáticas , Mutagênese Sítio-Dirigida , Replicação Viral/efeitos dos fármacos
15.
J Hepatol ; 48(6): 895-902, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18362040

RESUMO

BACKGROUND/AIMS: The efficacy of anti-viral therapy for chronic hepatitis B virus (HBV) is lost upon the emergence of resistant virus. Using >500 patient HBV isolates from several entecavir clinical trials, we show that phenotypic susceptibility correlates with genotypic resistance and patient virologic responses. METHODS: The full-length HBV or reverse transcriptase gene was amplified from patient sera, sequenced, and cloned into an HBV expression vector. Entecavir susceptibilities of individual virus clones and patient quasispecies populations were analyzed in conjunction with the sequenced resistance genotype and the patient's virologic response. RESULTS: Entecavir susceptibility decreased approximately 8-fold for isolates with various constellations of lamivudine resistance substitutions. The spectrum of additional substitutions that emerged during therapy at residues rtT184, rtS202, or rtM250 displayed varying levels of entecavir susceptibility according to the specific resistance substitutions and the proportion of resistant variants in the quasispecies. Phenotypic analyses of samples associated with virologic breakthrough confirmed the role of these residue changes in entecavir resistance. Additional longitudinal phenotypic analyses showed that decreased susceptibility correlated with both genotypic resistance and increased circulating HBV DNA. CONCLUSIONS: HBV phenotypic analysis provides additional insight as part of a resistance monitoring program that includes genotypic analysis and quantification of circulating virus.


Assuntos
Antivirais/uso terapêutico , DNA Viral/sangue , Farmacorresistência Viral/genética , Predisposição Genética para Doença/genética , Guanina/análogos & derivados , Vírus da Hepatite B/genética , Hepatite B/tratamento farmacológico , Monitoramento de Medicamentos/métodos , Genótipo , Guanina/uso terapêutico , Hepatite B/sangue , Vírus da Hepatite B/efeitos dos fármacos , Humanos , Lamivudina/uso terapêutico , Estudos Longitudinais , Mutação/genética , Fenótipo
16.
J Virol ; 81(8): 3992-4001, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17267485

RESUMO

Entecavir (ETV; Baraclude) is a novel deoxyguanosine analog with activity against hepatitis B virus (HBV). ETV differs from the other nucleoside/tide reverse transcriptase inhibitors approved for HBV therapy, lamivudine (LVD) and adefovir (ADV), in several ways: ETV is >100-fold more potent against HBV in culture and, at concentrations below 1 microM, displays no significant activity against human immunodeficiency virus (HIV). Additionally, while LVD and ADV are obligate DNA chain terminators, ETV halts HBV DNA elongation after incorporating a few additional bases. Three-dimensional homology models of the catalytic center of the HBV reverse transcriptase (RT)-DNA-deoxynucleoside triphosphate (dNTP) complex, based on the HIV RT-DNA structure, were used with in vitro enzyme kinetic studies to examine the mechanism of action of ETV against HBV RT. A novel hydrophobic pocket in the rear of the RT dNTP binding site that accommodates the exocyclic alkene moiety of ETV was predicted, establishing a basis for the superior potency observed experimentally. HBV DNA chain termination by ETV was accomplished through disfavored energy requirements as well as steric constraints during subsequent nucleotide addition. Validation of the model was accomplished through modeling of LVD resistance substitutions, which caused an eightfold decrease in ETV susceptibility and were predicted to reduce, but not eliminate, the ETV-binding pocket, in agreement with experimental observations. ADV resistance changes did not affect the ETV docking model, also agreeing with experimental results. Overall, these studies explain the potency, mechanism, and cross-resistance profile of ETV against HBV and account for the successful treatment of naive and LVD- or ADV-experienced chronic HBV patients.


Assuntos
Antivirais/farmacologia , Produtos do Gene pol/antagonistas & inibidores , Guanina/análogos & derivados , Vírus da Hepatite B/efeitos dos fármacos , Linhagem Celular , Produtos do Gene pol/química , Guanina/farmacologia , Vírus da Hepatite B/enzimologia , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular
17.
Antimicrob Agents Chemother ; 51(3): 902-11, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17178796

RESUMO

Entecavir (ETV) is a deoxyguanosine analog approved for use for the treatment of chronic infection with wild-type and lamivudine-resistant (LVDr) hepatitis B virus (HBV). In LVD-refractory patients, 1.0 mg ETV suppressed HBV DNA levels to below the level of detection by PCR (<300 copies/ml) in 21% and 34% of patients by Weeks 48 and 96, respectively. Prior studies showed that virologic rebound due to ETV resistance (ETVr) required preexisting LVDr HBV reverse transcriptase substitutions M204V and L180M plus additional changes at T184, S202, or M250. To monitor for resistance, available isolates from 192 ETV-treated patients were sequenced, with phenotyping performed for all isolates with all emerging substitutions, in addition to isolates from all patients experiencing virologic rebounds. The T184, S202, or M250 substitution was found in LVDr HBV at baseline in 6% of patients and emerged in isolates from another 11/187 (6%) and 12/151 (8%) ETV-treated patients by Weeks 48 and 96, respectively. However, use of a more sensitive PCR assay detected many of the emerging changes at baseline, suggesting that they originated during LVD therapy. Only a subset of the changes in ETVr isolates altered their susceptibilities, and virtually all isolates were significantly replication impaired in vitro. Consequently, only 2/187 (1%) patients experienced ETVr rebounds in year 1, with an additional 14/151 (9%) patients experiencing ETVr rebounds in year 2. Isolates from all 16 patients with rebounds were LVDr and harbored the T184 and/or S202 change. Seventeen other novel substitutions emerged during ETV therapy, but none reduced the susceptibility to ETV or resulted in a rebound. In summary, ETV was effective in LVD-refractory patients, with resistant sequences arising from a subset of patients harboring preexisting LVDr/ETVr variants and with approximately half of the patients experiencing a virologic rebound.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral/genética , Guanina/análogos & derivados , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Lamivudina/farmacologia , Antivirais/uso terapêutico , Células Cultivadas , DNA Viral/sangue , DNA Polimerase Dirigida por DNA/genética , Método Duplo-Cego , Guanina/farmacologia , Guanina/uso terapêutico , Hepatite B/tratamento farmacológico , Hepatite B/virologia , Humanos , Mutação , Plasmídeos/genética , Resultado do Tratamento , Replicação Viral/efeitos dos fármacos
18.
Hepatology ; 44(6): 1656-65, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17133475

RESUMO

Comprehensive monitoring of genotypic and phenotypic antiviral resistance was performed on 673 entecavir (ETV)-treated nucleoside naïve hepatitis B virus (HBV) patients. ETV reduced HBV DNA levels to undetectable by PCR (<300 copies/mL, <57 IU/mL) in 91% of hepatitis B e antigen (HBeAg)-positive and -negative patients by Week 96. Thirteen percent (n = 88) of the comparator lamivudine (LVD)-treated patients experienced a virologic rebound (> or =1 log increase from nadir by PCR) in the first year, with 74% of these having LVD resistance (LVDr) substitutions evident. In contrast, only 3% (n = 22) of ETV-treated patients exhibited virologic rebound by Week 96. Three ETV rebounds were attributable to LVDr virus present at baseline, with one having a S202G ETV resistance (ETVr) substitution emerge at Week 48. None of the other rebounding patients had emerging genotypic resistance or loss of ETV susceptibility. Genotyping all additional ETV patients with PCR-detectable HBV DNA at Weeks 48, 96, or end of dosing identified seven additional patients with LVDr substitutions, including one with simultaneous emergence of LVDr/ETVr. Generally, ETV patients with LVDr were detectable at baseline (8/10) and most subsequently achieved undetectable HBV DNA levels on ETV therapy (7/10). No other emerging substitutions identified decreased ETV susceptibility. In conclusion, ETVr emergence in ETV-treated nucleoside naïve patients over a 2-year period is rare, occurring in two patients with LVDr variants. These findings suggest that the rapid, sustained suppression of HBV replication, combined with a requirement for multiple substitutions, creates a high genetic barrier to ETVr in nucleoside naïve patients.


Assuntos
Antivirais/uso terapêutico , Farmacorresistência Viral , Guanina/análogos & derivados , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B Crônica/tratamento farmacológico , DNA Viral/análise , Guanina/uso terapêutico , Antígenos E da Hepatite B/imunologia , Humanos , Lamivudina/uso terapêutico , Nucleosídeos , Resultado do Tratamento
19.
Antimicrob Agents Chemother ; 49(10): 4354-7, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16189120

RESUMO

We have isolated in vitro fluoroquinolone-resistant mutants of the Lyme disease agent, Borrelia burgdorferi. Mutations in parC, which encodes a subunit of topoisomerase IV, were associated with loss of susceptibility to sparfloxacin, moxifloxacin, and Bay-Y3118, but not ciprofloxacin. This is the first description of fluoroquinolone resistance in the spirochete phylum.


Assuntos
Anti-Infecciosos/farmacologia , Borrelia burgdorferi/genética , Farmacorresistência Bacteriana/genética , Fluoroquinolonas/farmacologia , Mutação , DNA Bacteriano , Genes Bacterianos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Técnicas de Amplificação de Ácido Nucleico , Seleção Genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA