Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 169: 107887, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160502

RESUMO

Advanced head and neck cancers involving the mandible often require surgical removal of the diseased parts and replacement with donor bone or prosthesis to recreate the form and function of the premorbid mandible. The degree to which this reconstruction successfully replicates key geometric features of the original bone critically affects the cosmetic and functional outcomes of speaking, chewing, and breathing. With advancements in computational power, biomechanical modeling has emerged as a prevalent tool for predicting the functional outcomes of the masticatory system and evaluating the effectiveness of reconstruction procedures in patients undergoing mandibular reconstruction surgery. These models offer cost-effective and patient-specific treatment tailored to the needs of individuals. To underscore the significance of biomechanical modeling, we conducted a review of 66 studies that utilized computational models in the biomechanical analysis of mandibular reconstruction surgery. The majority of these studies employed finite element method (FEM) in their approach; therefore, a detailed investigation of FEM has also been provided. Additionally, we categorized these studies based on the main components analyzed, including bone flaps, plates/screws, and prostheses, as well as their design and material composition.


Assuntos
Reconstrução Mandibular , Humanos , Reconstrução Mandibular/métodos , Mandíbula/cirurgia , Placas Ósseas , Simulação por Computador , Fenômenos Biomecânicos , Análise de Elementos Finitos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA