RESUMO
Introduction: The pelvic floor muscles (PFM) are active during motor tasks that increase intra-abdominal pressure, but little is known about how the PFM respond to dynamic activities, such as gait. The purpose of this study was to characterize and compare PFM activity during walking and jogging in continent adults across the entire gait cycle. Methods: 17 able-bodied individuals (8 females) with no history of incontinence participated in this study. We recorded electromyography (EMG) from the abdominal muscles, gluteus maximus (GM), and PFM while participants performed attempted maximum voluntary contractions (aMVC) of all muscles and completed 60-70 strides in four gait conditions: slow walk (1 km/h); regular walk (self-selected comfortable pace); transition walk (self-selected fastest walking pace); jog (same speed as transition walking). We quantified activity throughout the whole gait cycle (%aMVCGC) and during periods of bursting (%aMVCBR) for each participant, and analyzed the timing of PFM bursting periods to explore when the PFM were most active in the gait cycle. We also conducted a phase metric analysis on the PFM and GM burst timings. We performed a Spearman's rank-order correlation to examine the effect of speed on %aMVCGC, %aMVCBR, and phase metric score, and used the Wilcoxon Signed-Rank test to evaluate the effect of gait modality, matched for speed (walking vs. jogging), on these variables. Results: The PFM were active throughout the gait cycle, with bursts typically occurring during single-leg support. The PFM and GM were in phase for 44-69% of the gait cycle, depending on condition. There was a positive correlation between gait speed and both %aMVCGC and %aMVCBR (p < 0.001). Phase metric scores were significantly higher during jogging than transition walking (p = 0.005), but there was no difference between gait modality on %aMVCGC or %aMVCBR (p = 0.059). Where possible we disaggregated data by sex, although were unable to make statistical comparisons due to low sample sizes. Conclusion: The PFM are active during walking and jogging, with greater activity at faster speeds and with bursts in activity around single-leg support. The PFM and GM co-activate during gait, but are not completely in phase with each other.
RESUMO
Introduction: Peripheral nerve stimulation can modulate the excitability of corticospinal pathways of muscles in the upper and lower limbs. Further, the pattern of peripheral nerve stimulation (continuous vs. intermittent) may be an important factor determining the modulation of this corticospinal excitability. The pelvic floor muscles (PFM) are crucial for maintaining urinary continence in humans, and share spinal segmental innervation with the tibial nerve. We explored the idea of whether the neuromodulatory effects of tibial nerve stimulation (TibNS) could induce effects on somatic pathways to the PFM. We evaluated the effects of two patterns of stimulation (intermittent vs. continuous) on corticospinal excitability of the PFM compared to its effect on the abductor hallucis (AH) muscle (which is directly innervated by the tibial nerve). We hypothesized that intermittent TibNS would increase, while continuous stimulation would decrease, the excitability of both AH and PFM. Methods: Twenty able-bodied adults (20-33 years of age) enrolled in this study. TibNS was delivered either intermittently (1 ms pulses delivered at 30Hz with an on:off duty cycle of 600:400 ms, for 60 min), or continuously (1 ms pulses delivered at 30Hz for 36 min) just above the motor threshold of the AH. We randomized the order of the stimulation pattern and tested them on separate days. We used surface electromyography (EMG) to record motor-evoked responses (MEP) in the PFM and AH following transcranial magnetic stimulation (TMS). We generated stimulus-response (SR) curves to quantify the changes in peak-to-peak MEP amplitude relative to TMS intensity to assess changes in corticospinal excitability pre- and post-stimulation. Results and Conclusion: We found that TibNS increased corticospinal excitability only to AH, with no effects in PFM. There was no difference in responses to continuous vs. intermittent stimulation. Our results indicate a lack of effect of TibNS on descending somatic pathways to the PFM, but further investigation is required to explore other stimulation parameters and whether neuromodulatory effects may be spinal in origin.
RESUMO
CONTEXT: Autonomic dysreflexia (AD), characterized by a transient increase in systolic blood pressure (BP), is experienced by individuals with spinal cord injury (SCI) and can be purposefully induced ('boosting') to counteract autonomic dysfunction that impairs cardiovascular responses to exercise. Herein, we demonstrate the impact of unintentional boosting observed during cardiopulmonary exercise testing (CPET) in an inactive male with SCI (C5, motor-complete). FINDINGS: On two separate occasions the individual performed a standard arm-crank CPET (1-min stages, 7W increase in resistance) following by a longer CPET (4-min stages, 12W increase in resistance), both to volitional exhaustion. The second CPET was performed to confirm the accuracy of exercise intensity prescription and verify peak exercise parameters. Immediately following the second CPET on the initial visit, the individual reported symptoms of AD, verified as a 58mmHg increase in systolic BP from baseline. Relative to the first CPET, performed only 35 min earlier, there were pronounced differences in peak exercise responses. In comparison to the longer CPET performed on the second visit without a concomitant episode of AD (thereby controlling for the type of CPET protocol administered), peak exercise outcomes were considerably elevated: power output (Δ19W), oxygen uptake (Δ3.61â ml·â kg·-1min-1), ventilation (Δ11.4 Lâ ·min-1) and heart rate (Δ9 b·min-1). CONCLUSION/CLINICAL RELEVANCE: This case raises important considerations around the nuances of CPET in this population. In individuals susceptible to BP instability, the physiologically boosted state may explain a significant proportion of the variance in peak aerobic capacity and should be closely monitored before and after clinical CPET.
Assuntos
Disreflexia Autonômica , Traumatismos da Medula Espinal , Masculino , Humanos , Teste de Esforço , Traumatismos da Medula Espinal/complicações , Disreflexia Autonômica/diagnóstico , Disreflexia Autonômica/etiologia , Quadriplegia/diagnóstico , Quadriplegia/complicações , Frequência Cardíaca , Consumo de OxigênioRESUMO
CONTEXT: Recovery of seated balance is a rehabilitation priority for people with motor-complete spinal cord injury (mcSCI). Previous research has demonstrated that people with mcSCI can voluntarily engage their trunk muscles during different exercise programs that have the potential to improve seated balance control. Boxing and battle rope exercises could offer another opportunity to improve seated balance for people with mcSCI, but it is unknown if this type of exercise engages trunk musculature and challenges seated balance. OBJECTIVE: To describe the movement patterns of people with mcSCI compared to controls by characterizing the muscle activation patterns and kinematics of the trunk and upper-body during boxing and battle rope exercise. DESIGN: Cross-sectional study. PARTICIPANTS: 4 males with mcSCI between C7-T9, and 4 able-bodied controls. METHODS: Participants performed different boxing and battle rope exercises while kinematics and electromyography (EMG) from the trunk and arms were recorded. OUTCOME MEASURES: Trunk EMG amplitude, trunk and arm joint angles, and trunk curvature. RESULTS: Boxing and battle ropes elicited higher relative EMG activity in people with mcSCI compared to controls (P < 0.001). Participants with mcSCI had similar upper-limb kinematics during the exercises to controls, but demonstrated reduced trunk rotation and increased trunk curvature. CONCLUSIONS: These findings suggest that boxing and battle rope can elicit trunk activity in people with mcSCI, though they may adopt increased trunk curvatures. Future research should explore if such exercise programs may improve seated balance in people with mcSCI.
RESUMO
Individuals classified clinically as having a motor-complete spinal cord injury (mcSCI) should lack voluntary motor function below their injury level. Neurophysiological assessments using electromyography (EMG) and transcranial magnetic stimulation (TMS), however, have demonstrated that persons with mcSCI retain limited cortical descending innervation and voluntary activation of muscles below their level of injury, including muscles of the trunk and lower limb. We explored the possibility of whether there is also preserved innervation of the pelvic floor muscles (PFM) in persons with mcSCI. The PFM are controlled by widespread cortical and subcortical areas and typically coactivated with trunk and gluteal muscles to maintain continence and regulate intra-abdominal pressure. Nine mcSCI and eight control subjects participated in this cross-sectional study. Surface EMG was used to record activity in the PFM. Data were recorded while participants attempted various maneuvers of the trunk and pelvis. We also applied TMS at incrementing levels of intensity over the primary motor cortex area to record motor evoked potentials (MEPs) in the PFM. When performing the maneuvers, activation of the PFM was possible in all controls and the majority of SCI participants. However, the PFM were only activated in the SCI participants during maneuvers that engaged other trunk muscles, however. MEP responses in the PFM were also elicited in all controls and SCI participants, but MEP response characteristics were significantly altered in the SCI group. Our results suggest that persons with mcSCI retain some residual innervation of the PFM after injury, possibly via indirect cortical descending pathways.
Assuntos
Potencial Evocado Motor/fisiologia , Músculo Esquelético/inervação , Diafragma da Pelve/inervação , Traumatismos da Medula Espinal/fisiopatologia , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia , Diafragma da Pelve/fisiopatologia , Estimulação Magnética TranscranianaRESUMO
BACKGROUND: There is some evidence that upper-body training modalities can improve not only aerobic capacity but also seated balance in people with spinal cord injury (SCI), even in those classified with motor-complete paralysis above T6. Here, we evaluated the effect of arm crank ergometry (ACE) "spin" training on trunk muscle recruitment and its effects on seated balance and aerobic capacity. METHODS: Eight individuals with high-level complete and 6 with either a low-level complete or a motor-incomplete SCI participated in this study. Participants completed 5 weeks of a group ACE "spin" training protocol which featured modulations in cadence and resistance as well as back-supported and unsupported bouts. Surface electromyography was used to confirm trunk muscle recruitment during unsupported ACE. Changes in aerobic capacity (peak oxygen consumption) and seated balance control (center of pressure parameters) were assessed at pre- and post-intervention. RESULTS: Unsupported ACE was effective for eliciting trunk muscle activity (P < .05). Following training, peak oxygen consumption significantly improved by an average of 16% (P = .005). Static sitting balance significantly improved from pre- to post-intervention, but only when tested with eyes closed as measured by a reduction in area (P = .047) and velocity of center of pressure (P = .013). No significant changes were observed in static sitting balance with eyes open or in dynamic sitting balance. CONCLUSION: Group ACE "spin" classes may benefit not only aerobic fitness but also static seated balance control in people with SCI.
Assuntos
Aptidão Cardiorrespiratória , Terapia por Exercício/métodos , Tolerância ao Exercício , Equilíbrio Postural , Traumatismos da Medula Espinal/terapia , Adulto , Braço , Ergometria , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Consumo de Oxigênio , Postura Sentada , TroncoRESUMO
Proprioception is critical for movement control. After a spinal cord injury (SCI), individuals not only experience paralysis but may also experience proprioceptive deficits, further confounding motor recovery. The objective of this study was to test the effects of a robotic-based proprioception training protocol on lower limb proprioceptive sense in people with incomplete SCI. A secondary objective was to assess whether the effects of training transferred to a precision stepping task in people with motor-incomplete SCI. Participants with chronic incomplete SCI and able-bodied controls underwent a 2-day proprioceptive training protocol using the Lokomat robotic exoskeleton. The training involved positioning the test leg to various positions and participants were asked to report whether they felt their heel position (end-point position) was higher or lower compared with a reference position. Feedback was provided after each trial to help participants learn strategies that could help them discern different positions of their foot. Changes in end-point position as well as knee joint position sense were assessed pre- and posttraining. We also assessed the effects of proprioception training on the performance of a precision stepping task in people with motor-incomplete SCI. Following training, there were significant improvements in end-point and knee joint position sense in both groups. The magnitude of improvement was related to pretraining (baseline) proprioceptive sense, indicating that those who initially had better lower limb position sense showed greater changes. Participants also showed improvements in performance of a precision stepping task.NEW & NOTEWORTHY We show that it is possible to alter proprioceptive sense in people with incomplete SCI using a passive proprioception training protocol combined with feedback. Improvements in proprioceptive sense transferred from end-point to joint position sense and also to an untrained precision stepping task.
Assuntos
Exoesqueleto Energizado , Extremidade Inferior/fisiopatologia , Reabilitação Neurológica/métodos , Propriocepção/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reabilitação Neurológica/instrumentação , Resultado do TratamentoRESUMO
INTRODUCTION: Individuals with motor-incomplete SCI (m-iSCI) remain limited community ambulators, partly because they have difficulty with the skilled walking requirements of everyday life that require adaptations in inter-joint coordination and range of motion of the lower limbs. Following locomotor training, individuals with SCI show improvements in skilled walking and walking speed, however there is limited understanding of how adaptations in lower limb kinematics following training contribute to improvements in walking. OBJECTIVE: To determine the relationship between changes in lower limb kinematics (range of motion and inter-joint coordination) and improvements in walking function (walking speed and skilled walking) following locomotor training. METHODS: Lower limb kinematics were recorded from 8 individuals with chronic m-iSCI during treadmill walking before and after a 3-month locomotor training program. Data were also collected from 5 able-bodied individuals to provide normative values. In individuals with SCI, muscle strength was used to define the stronger and weaker limb. Motion analysis was used to determine, hip, knee and ankle angles. Joint angle-angle plots (cyclograms) were used to quantify inter-joint coordination. Shape differences between pre-and post-training cyclograms were used to assess the changes in coordination and their relation to improvements in walking function. Walking function was assessed using the 10MWT for walking speed and the SCI-FAP for skilled walking. Comparing pre- and post-training cyclograms to the able-bodied pattern was used to understand the extent to which changes in coordination involved the recovery of normative motor patterns. RESULTS: Following training, improvements in skilled walking were significantly related to changes in hip-ankle coordination (ρ = - .833, p = 0.010) and knee range of motion (ρ = .833, p = 0.010) of the weaker limb. Inter-joint coordination tended to revert towards normative patterns, but not completely. No relationships were observed with walking speed. CONCLUSION: Larger changes in hip-ankle coordination and a decrease in knee range of motion in the weaker limb during treadmill walking were related to improvements in skilled walking following locomotor training in individuals with SCI. The changes in coordination seem to reflect some restoration of normative patterns and the adoption of compensatory strategies, depending on the participant.
Assuntos
Adaptação Fisiológica , Traumatismos da Medula Espinal/reabilitação , Caminhada , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Articulações , Joelho , Extremidade Inferior , Masculino , Pessoa de Meia-Idade , Destreza Motora , Amplitude de Movimento Articular , Velocidade de CaminhadaRESUMO
Many people with motor-incomplete spinal cord injury (m-iSCI) experience difficulty navigating obstacles, such as curbs and stairs. The ability to relearn walking skills may be limited by proprioceptive deficits. The purpose of this study was to determine the capacity of participants to acquire a precision walking skill, and to evaluate the influence of proprioceptive deficits on the skill acquisition in individuals with m-iSCI. Sixteen individuals with m-iSCI and eight controls performed a precision walking task that required matching their foot height to a target during the swing phase. Proprioceptive deficits were quantified at the hip and knee for joint position and movement detection sense. Participants completed 600 steps of training with visual feedback. Pretraining and posttraining tests were conducted without visual feedback, along with a transfer test with an ankle weight. Posttraining and transfer tests were repeated 1 day later. Participants returned to the laboratory 1 wk later to repeat the training. Performance was calculated as the vertical distance between the target and actual foot height for each step. The posttraining and transfer performances were similar between groups. However, participants with m-iSCI had a slower rate of acquisition to achieve a similar performance level compared with controls. Acquisition rate and posttraining performance of the precision walking task were related to lower limb joint position sense among SCI participants. Although they can achieve a similar level of performance in a precision walking task, proprioceptive deficits impair the rate of learning among individuals with m-iSCI compared with able-bodied controls. NEW & NOTEWORTHY People with motor-incomplete spinal cord injuries are able to achieve the same level of performance accuracy on a precision walking task as able-bodied controls; however, the rate of learning is slower, indicating that more practice is required to stabilize performance. Our findings also show a relationship between impaired sensory function and reduced accuracy when performing a precision walking task after spinal cord injury.