Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Methods Cell Biol ; 188: 237-254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38880526

RESUMO

The prevalence of central nervous system (CNS) dysfunction as a result of disease or trauma remains a clinically unsolved problem which is raising increased awareness in our aging society. Human Dental Pulp Stem Cells (hDPSCs) are excellent candidates to be used in tissue engineering and regenerative therapies of the CNS due to their neural differentiation ability and lack of tumorigenicity. Accordingly, they have been successfully used in animal models of spinal cord injury, stroke and peripheral neuropathies. The ideal therapy in brain injury should combine strategies aiming to protect the damaged lesion and, at the same time, accelerate brain tissue regeneration, thus promoting fast recovery while minimizing side or long-term effects. The use of bioresorbable nanopatterned poly(lactide-co-ɛ-caprolactone) (PLCL) polymeric scaffolds as hDPCSs carriers can represent an advantage for tissue regeneration. In this chapter, we describe the surgical procedures to implant functionalized bioresorbable scaffolds loaded with hDPSCs to improve the brain lesion microenvironment in an intracranial stab wound injury model severing the rostral migratory stream (RMS) that connects the brain subventricular zone (SVZ) and the olfactory bulb in nude mice. Additionally, we also describe the technical steps after animal sacrifice for histological tissue observation and characterization.


Assuntos
Polpa Dentária , Modelos Animais de Doenças , Camundongos Nus , Células-Tronco , Alicerces Teciduais , Polpa Dentária/citologia , Animais , Humanos , Alicerces Teciduais/química , Camundongos , Células-Tronco/citologia , Transplante de Células-Tronco/métodos , Ferimentos Perfurantes/terapia , Implantes Absorvíveis , Lesões Encefálicas/terapia , Lesões Encefálicas/patologia , Engenharia Tecidual/métodos
3.
Hum Reprod Open ; 2024(2): hoae010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449521

RESUMO

STUDY QUESTION: Twenty years after the inception of the first fertility preservation programme for pre-pubertal boys, what are the current international practices with regard to cryopreservation of immature testicular tissue? SUMMARY ANSWER: Worldwide, testicular tissue has been cryopreserved from over 3000 boys under the age of 18 years for a variety of malignant and non-malignant indications; there is variability in practices related to eligibility, clinical assessment, storage, and funding. WHAT IS KNOWN ALREADY: For male patients receiving gonadotoxic treatment prior to puberty, testicular tissue cryopreservation may provide a method of fertility preservation. While this technique remains experimental, an increasing number of centres worldwide are cryopreserving immature testicular tissue and are approaching clinical application of methods to use this stored tissue to restore fertility. As such, standards for quality assurance and clinical care in preserving immature testicular tissue should be established. STUDY DESIGN SIZE DURATION: A detailed survey was sent to 17 centres within the recently established ORCHID-NET consortium, which offer testicular tissue cryopreservation to patients under the age of 18 years. The study encompassed 60 questions and remained open from 1 July to 1 November 2022. PARTICIPANTS/MATERIALS SETTING METHODS: Of the 17 invited centres, 16 completed the survey, with representation from Europe, Australia, and the USA. Collectively, these centres have cryopreserved testicular tissue from patients under the age of 18 years. Data are presented using descriptive analysis. MAIN RESULTS AND THE ROLE OF CHANCE: Since the establishment of the first formal fertility preservation programme for pre-pubertal males in 2002, these 16 centres have cryopreserved tissue from 3118 patients under the age of 18 years, with both malignant (60.4%) and non-malignant (39.6%) diagnoses. All centres perform unilateral biopsies, while 6/16 sometimes perform bilateral biopsies. When cryopreserving tissue, 9/16 centres preserve fragments sized ≤5 mm3 with the remainder preserving fragments sized 6-20 mm3. Dimethylsulphoxide is commonly used as a cryoprotectant, with medium supplements varying across centres. There are variations in funding source, storage duration, and follow-up practice. Research, with consent, is conducted on stored tissue in 13/16 centres. LIMITATIONS REASONS FOR CAUTION: While this is a multi-national study, it will not encompass every centre worldwide that is cryopreserving testicular tissue from males under 18 years of age. As such, it is likely that the actual number of patients is even higher than we report. Whilst the study is likely to reflect global practice overall, it will not provide a complete picture of practices in every centre. WIDER IMPLICATIONS OF THE FINDINGS: Given the research advances, it is reasonable to suggest that cryopreserved immature testicular tissue will in the future be used clinically to restore fertility. The growing number of patients undergoing this procedure necessitates collaboration between centres to better harmonize clinical and research protocols evaluating tissue function and clinical outcomes in these patients. STUDY FUNDING/COMPETING INTERESTS: K.D. is supported by a CRUK grant (C157/A25193). R.T.M. is supported by an UK Research and Innovation (UKRI) Future Leaders Fellowship (MR/S017151/1). The MRC Centre for Reproductive Health at the University of Edinburgh is supported by MRC (MR/N022556/1). C.L.M. is funded by Kika86 and ZonMW TAS 116003002. A.M.M.v.P. is supported by ZonMW TAS 116003002. E.G. was supported by the Research Program of the Research Foundation-Flanders (G.0109.18N), Kom op tegen Kanker, the Strategic Research Program (VUB_SRP89), and the Scientific Fund Willy Gepts. J.-B.S. is supported by the Swedish Childhood Cancer Foundation (TJ2020-0026). The work of NORDFERTIL is supported by the Swedish Childhood Cancer Foundation (PR2019-0123; PR2022-0115), the Swedish Research Council (2018-03094; 2021-02107), and the Birgitta and Carl-Axel Rydbeck's Research Grant for Paediatric Research (2020-00348; 2021-00073; 2022-00317; 2023-00353). C.E is supported by the Health Department of the Basque Government (Grants 2019111068 and 2022111067) and Inocente Inocente Foundation (FII22/001). M.P.R. is funded by a Medical Research Council Centre for Reproductive Health Grant No: MR/N022556/1. A.F. and N.R. received support from a French national research grant PHRC No. 2008/071/HP obtained by the French Institute of Cancer and the French Healthcare Organization. K.E.O. is funded by the University of Pittsburgh Medical Center and the US National Institutes of Health HD100197. V.B-L is supported by the French National Institute of Cancer (Grant Seq21-026). Y.J. is supported by the Royal Children's Hospital Foundation and a Medical Research Future Fund MRFAR000308. E.G., N.N., S.S., C.L.M., A.M.M.v.P., C.E., R.T.M., K.D., M.P.R. are members of COST Action CA20119 (ANDRONET) supported by COST (European Cooperation in Science and Technology). The Danish Child Cancer Foundation is also thanked for financial support (C.Y.A.). The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.

4.
Cytotherapy ; 26(1): 25-35, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897472

RESUMO

BACKGROUND AIMS: There are currently no effective anti-viral treatments for coronavirus disease 2019 (COVID-19)-hospitalized patients with hypoxemia. Lymphopenia is a biomarker of disease severity usually present in patients who are hospitalized. Approaches to increasing lymphocytes exerting an anti-viral effect must be considered to treat these patients. Following our phase 1 study, we performed a phase 2 randomized multicenter clinical trial in which we evaluated the efficacy of the infusion of allogeneic off-the-shelf CD45RA- memory T cells containing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells from convalescent donors plus the standard of care (SoC) versus just the SoC treatment. METHODS: Eighty-four patients were enrolled in three Spanish centers. The patients were randomized into the infusion of 1 × 106/kg CD45RA- memory T cells or the SoC. We selected four unvaccinated donors based on the expression of interferon gamma SARS-CoV-2-specific response within the CD45RA- memory T cells and the most frequent human leukocyte antigen typing in the Spanish population. RESULTS: We analyzed data from 81 patients. The primary outcome for recovery, defined as the proportion of participants in each group with normalization of fever, oxygen saturation sustained for at least 24 hours and lymphopenia recovery through day 14 or at discharge, was met for the experimental arm. We also observed faster lymphocyte recovery in the experimental group. We did not observe any treatment-related adverse events. CONCLUSIONS: Adoptive cell therapy with off-the-shelf CD45RA- memory T cells containing SAR-CoV-2-specific T cells is safe, effective and accelerates lymphocyte recovery of patients with COVID-19 pneumonia and/or lymphopenia. TRIAL REGISTRATION: NCT04578210.


Assuntos
COVID-19 , Linfopenia , Humanos , SARS-CoV-2 , COVID-19/terapia , Células T de Memória , Resultado do Tratamento , Linfopenia/terapia , Antivirais
5.
Front Immunol ; 14: 1232472, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37767093

RESUMO

An unprecedented global social and economic impact as well as a significant number of fatalities have been brought on by the coronavirus disease 2019 (COVID-19), produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Acute SARS-CoV-2 infection can, in certain situations, cause immunological abnormalities, leading to an anomalous innate and adaptive immune response. While most patients only experience mild symptoms and recover without the need for mechanical ventilation, a substantial percentage of those who are affected develop severe respiratory illness, which can be fatal. The absence of effective therapies when disease progresses to a very severe condition coupled with the incomplete understanding of COVID-19's pathogenesis triggers the need to develop innovative therapeutic approaches for patients at high risk of mortality. As a result, we investigate the potential contribution of promising combinatorial cell therapy to prevent death in critical patients.

6.
Life Sci Alliance ; 6(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37643865

RESUMO

Gametogenesis is a complex and sex-specific multistep process during which the gonadal somatic niche plays an essential regulatory role. One of the most crucial steps during human female gametogenesis is the formation of primordial follicles, the functional unit of the ovary that constitutes the pool of follicles available at birth during the entire reproductive life. However, the relation between human fetal germ cells (hFGCs) and gonadal somatic cells during the formation of the primordial follicles remains largely unexplored. We have discovered that hFGCs can form multinucleated syncytia, some connected via interconnecting intercellular bridges, and that not all nuclei in hFGC-syncytia were synchronous regarding meiotic stage. As hFGCs progressed in development, pre-granulosa cells formed protrusions that seemed to progressively constrict individual hFGCs, perhaps contributing to separate them from the multinucleated syncytia. Our findings highlighted the cell-cell interaction and molecular dynamics between hFGCs and (pre)granulosa cells during the formation of primordial follicles in humans. Knowledge on how the pool of primordial follicle is formed is important to understand human infertility.


Assuntos
Comunicação Celular , Ovário , Recém-Nascido , Masculino , Humanos , Feminino , Núcleo Celular , Gametogênese , Células Germinativas
7.
Front Immunol ; 14: 1225549, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638054

RESUMO

Natural killer (NK) cells are lymphocytes of the innate immune system that play a key role in the elimination of tumor and virus-infected cells. Unlike T cells, NK cell activation is governed by their direct interaction with target cells via the inhibitory and activating receptors present on their cytoplasmic membrane. The simplicity of this activation mechanism has allowed the development of immunotherapies based on the transduction of NK cells with CAR (chimeric antigen receptor) constructs for the treatment of cancer. Despite the advantages of CAR-NK therapy over CAR-T, including their inability to cause graft-versus-host disease in allogenic therapies, a deeper understanding of the impact of their handling is needed in order to increase their functionality and applicability. With that in mind, the present work critically examines the steps required for NK cell isolation, expansion and storage, and analyze the response of the NK cells to these manipulations. The results show that magnetic-assisted cell sorting, traditionally used for NK isolation, increases the CD16+ population of NK cultures only if the protocol includes both, antibody incubation and passage through the isolation column. Furthermore, based on the importance of surface potential on cellular responses, the influence of surfaces with different net surface charge on NK cells has been evaluated, showing that NK cells displayed higher proliferation rates on charged surfaces than on non-charged ones. The present work highlights the relevance of NK cells manipulation for improving the applicability and effectiveness of NK cell-based therapies.


Assuntos
Células Matadoras Naturais , Receptores de Antígenos Quiméricos , Anticorpos , Membrana Celular , Separação Celular , Terapia Baseada em Transplante de Células e Tecidos
8.
J Assist Reprod Genet ; 40(9): 2241-2250, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37436645

RESUMO

PURPOSE: To investigate if there are natural killer (NK) cells in endometrial fluid (EF) and their relationship with the endometrial cycle and reproductive parameters. METHODS: The population under study consisted of 43 women aged 18-40 undergoing infertility workup at our University Hospital in 2021-2022. The EF samples were obtained at the first visit to our unit, on occasion of the mock embryo transfer. The day of the cycle was considered only in cycles of 27-29 days. An immunophenotype study of NK in EF was performed by flow cytometry analysis. In a subgroup of women, on the same day, NK was studied in EF and peripheral blood. RESULTS: Our study is the first to evidence NK cells in EF. None of the NK cells observed corresponded to a mature peripheral blood NK cell population (stages 4-5), and neither endometrial nor decidual uNK cells were detected. Nevertheless, we found 2 patient groups with an NK cell subset with a higher expression of CD16+, which could belong to an intermediate or transient stage between the uNK and pbNK NK cell population in the EF. We found that CD16 was significantly increased in the mid-late luteal phase and its correlation with the day of the cycle. The NK immunophenotype was different in EF and peripheral blood. CONCLUSION: We described a new component of the EF, the NK cells, whose CD16 activity is closely correlated with the day of the cycle. These cells could play a role in implantation/implantation failure.


Assuntos
Endométrio , Células Matadoras Naturais , Feminino , Humanos , Projetos Piloto , Endométrio/metabolismo , Células Matadoras Naturais/metabolismo , Ciclo Menstrual , Reprodução
9.
Antimicrob Agents Chemother ; 67(6): e0157422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37133382

RESUMO

The development of new combinations of antimalarial drugs is urgently needed to prevent the spread of parasites resistant to drugs in clinical use and contribute to the control and eradication of malaria. In this work, we evaluated a standardized humanized mouse model of erythrocyte asexual stages of Plasmodium falciparum (PfalcHuMouse) for the selection of optimal drug combinations. First, we showed that the replication of P. falciparum was robust and highly reproducible in the PfalcHuMouse model by retrospective analysis of historical data. Second, we compared the relative value of parasite clearance from blood, parasite regrowth after suboptimal treatment (recrudescence), and cure as variables of therapeutic response to measure the contributions of partner drugs to combinations in vivo. To address the comparison, we first formalized and validated the day of recrudescence (DoR) as a new variable and found that there was a log-linear relationship with the number of viable parasites per mouse. Then, using historical data on monotherapy and two small cohorts of PfalcHuMice evaluated with ferroquine plus artefenomel or piperaquine plus artefenomel, we found that only measurements of parasite killing (i.e., cure of mice) as a function of drug exposure in blood allowed direct estimation of the individual drug contribution to efficacy by using multivariate statistical modeling and intuitive graphic displays. Overall, the analysis of parasite killing in the PfalcHuMouse model is a unique and robust experimental in vivo tool to inform the selection of optimal combinations by pharmacometric pharmacokinetic and pharmacodynamic (PK/PD) modeling.


Assuntos
Antimaláricos , Malária Falciparum , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum , Estudos Retrospectivos , Peróxidos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Combinação de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA