Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Breed ; 44(6): 43, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38836186

RESUMO

Actinidia arguta (A. arguta, kiwiberry) is a perennial deciduous vine with a strong overwintering ability. We hypothesized that trehalose metabolism, which plays a pivotal role in the stress tolerance of plants, may be involved in the cold acclimatization of A. arguta. Transcriptome analysis showed that the expression of AaTPPA, which encodes a trehalose-6-phosphate phosphatase (TPP), was upregulated in response to low temperatures. AaTPPA expression levels were much higher in lateral buds, roots, and stem cambia than in leaves in autumn. In AaTPPA-overexpressing (OE) Arabidopsis thaliana (A. thaliana), trehalose levels were 8-11 times higher than that of the wild type (WT) and showed different phenotypic characteristics from WT and OtsB (Escherichia coli TPP) overexpressing lines. AaTPPA-OE A. thaliana exhibited significantly higher freezing tolerance than WT and OtsB-OE lines. Transient overexpression of AaTPPA in A. arguta leaves increased the scavenging ability of reactive oxygen species (ROS) and the soluble sugar and proline contents. AaERF64, an ethylene-responsive transcription factor, was induced by ethylene treatment and bound to the GCC-box of the AaTPPA promoter to activate its expression. AaTPPA expression was also induced by abscisic acid. In summary, the temperature decrease in autumn is likely to induce AaERF64 expression through an ethylene-dependent pathway, which consequently upregulates AaTPPA expression, leading to the accumulation of osmotic protectants such as soluble sugars and proline in the overwintering tissues of A. arguta. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01475-8.

2.
J Ethnopharmacol ; 330: 118215, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38641073

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Orostachys malacophylla (Pall.) Fisch (O. malacophylla) is a succulent herbaceous plant that is the Orostachys genus of Crassulaceae family. O. malacophylla has been widely used as a traditional Chinese medicine with antioxidant, anti-inflammatory, anti-febrile, antidote, anti-Toxoplasma gondii properties. However, the biological function of alleviating intestinal inflammation and key bioactive compounds were still unknown. AIM OF THE STUDY: We used a Drosophila model to study the protective effects and bioactive compounds of O. malacophylla water extract (OMWE) and butanol extract (OMBE) on intestinal inflammation. MATERIALS AND METHODS: Drosophila intestinal inflammation was induced by oral invasion of dextran sodium sulfate (DSS) or Erwinia carotovora carotovora 15 (Ecc15). We revealed the protective effects of two extracts by determining intestinal reactive oxygen species (ROS) and antimicrobial peptide (AMP) levels and intestinal integrity, and using network pharmacology analysis to identify bioactive compounds. RESULTS: We demonstrated that both OMWE and OMBE could ameliorate the detrimental effects of DSS, including a decreased survival rate, elevated ROS levels, increased cell death, excessive proliferation of ISCs, acid-base imbalance, and disruption of intestinal integrity. Moreover, the overabundance of lipid droplets (LDs) and AMPs by Ecc15 infection is mitigated by these extracts, thereby enhancing the flies' resistance to adverse stimuli. In addition, we used widely targeted metabolomics and network pharmacology analysis to identify bioactive compounds associated with IBD healing that are present in OMWE and OMBE. CONCLUSIONS: In summary, our research indicates that OMWE and OMBE significantly mitigate intestinal inflammation and have the potential to be effective therapeutic agents for IBD in humans.


Assuntos
Sulfato de Dextrana , Pectobacterium carotovorum , Extratos Vegetais , Espécies Reativas de Oxigênio , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Pectobacterium carotovorum/efeitos dos fármacos , Crassulaceae/química , Intestinos/efeitos dos fármacos , Intestinos/patologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Drosophila melanogaster/efeitos dos fármacos , Modelos Animais de Doenças , Drosophila , Farmacologia em Rede , Inflamação/tratamento farmacológico , Peptídeos Catiônicos Antimicrobianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA