Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Science ; 379(6635): 879-880, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862786

RESUMO

Changes to the landscape over millions of years are a driver of Earth system processes.

2.
Sci Rep ; 12(1): 14260, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995964

RESUMO

Plate corners with extreme exhumation rates are important because they offer a perspective for understanding the interactions between tectonics and surface processes. The southern Alaskan margin with its curved convergent plate boundary and associated zones of localized uplift is a prime location to study active orogeny. Here, we present the results of fully-coupled thermo-mechanical (geodynamic) and geomorphologic numerical modelling, the design of which captures the key features of the studied area: subduction of oceanic lithosphere (Pacific plate) is adjacent to a pronounced asymmetric indenter dipping at a shallow angle (Yakutat microplate), which in turn is bounded to the east by a dextral strike-slip shear zone (Fairweather fault). The resulting first-order deformation/rock uplift patterns show strong similarities with observations. In particular, relatively young thermochronological ages are reproduced along the plate-bounding (Fairweather) transform fault and in the area of its transition to convergence (the St. Elias syntaxis). The focused exhumation of the Chugach Core also finds its equivalent in model predicted zones of high rock uplift rates in an isolated region above the indenter. From these results, we suggest that the general exhumation patterns observed in southern Alaska are controlled by mutually reinforcing effects of tectonic deformation and surface erosion processes.


Assuntos
Exumação , Alaska
3.
Tectonics ; 37(7): 2243-2267, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30197466

RESUMO

We present a regional analysis of new low-temperature thermochronometer ages from the Central Andean fore arc to provide insights into the exhumation history of the western Andean margin. To derive exhumation rates over 10 million-year timescales, 38 new apatite and zircon (U-Th)/He ages were analyzed along six ~500-km long near-equal-elevation, coast parallel, transects in the Coastal Cordillera (CC) and higher-elevation Precordillera (PC) of the northern Chilean Andes between latitudes 18.5°S and 22.5°S. These transects were augmented with age-elevation profiles where possible. Results are synthesized with previously published thermochronometric data, corroborating a previously observed trenchward increase in cooling ages in Peru and northern Chile. One-dimensional thermal-kinematic modeling of all available multichronometer equal-elevation samples reveals mean exhumation rates of <0.2 km/Myr since ~50 Ma in the PC and ~100 Ma in the CC. Regression of pseudovertical age-elevation transects in the CC yields comparable rates of ~0.05 to ~0.12 km/Myr between ~40 and 80 Ma. Differences between the long-term mean 1-D rates and shorter-term age-elevation-derived rates indicate low variability in the exhumation history. Modeling results suggest similar background exhumation rates in the CC and PC; younger ages in the PC are largely a function of increased heat flow and consequently an elevated geothermal gradient near the arc. Slow exhumation rates are suggestive of semiarid conditions across the region since at least the Eocene and deformation and development of the Andean fore arc around this time.

4.
Nature ; 504(7480): 423-6, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24352288

RESUMO

Climate influences the erosion processes acting at the Earth's surface. However, the effect of cooling during the Late Cenozoic era, including the onset of Pliocene-Pleistocene Northern Hemisphere glaciation (about two to three million years ago), on global erosion rates remains unclear. The uncertainty arises mainly from a lack of consensus on the use of the sedimentary record as a proxy for erosion and the difficulty of isolating the respective contributions of tectonics and climate to erosion. Here we compile 18,000 bedrock thermochronometric ages from around the world and use a formal inversion procedure to estimate temporal and spatial variations in erosion rates. This allows for the quantification of erosion for the source areas that ultimately produce the sediment record on a timescale of millions of years. We find that mountain erosion rates have increased since about six million years ago and most rapidly since two million years ago. The increase of erosion rates is observed at all latitudes, but is most pronounced in glaciated mountain ranges, indicating that glacial processes played an important part. Because mountains represent a considerable fraction of the global production of sediments, our results imply an increase in sediment flux at a global scale that coincides closely with enhanced cooling during the Pliocene and Pleistocene epochs.

5.
Science ; 341(6147): 774-6, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23950534

RESUMO

Canyon incision into mountain topography is commonly used as a proxy for surface uplift driven by tectonic or geodynamic processes, but climatic changes can also instigate incision. The ~1250-kilometer (km)-long eastern margin of the Andean Plateau hosts a series of 1.5- to 2.5-km-deep canyons that cross major deformation zones. Using (U-Th)/He thermochronology, we document a transition from Miocene faulting to Pliocene canyon incision across the northeastern plateau margin. Regionally, widespread Pliocene incision into the eastern plateau margin is concurrent with a shift in global climate from early Pliocene warmth to late Pliocene cooling. Enhanced moisture transport onto the Andean Plateau driven by sea surface temperature changes during cooling is the likely pacemaker for canyon incision.

6.
Science ; 328(5977): 490-3, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20360069

RESUMO

A decrease in the ratio of 18O to 16O (delta18O) of sedimentary carbonate from the Bolivian Altiplano has been interpreted to indicate rapid surface uplift of the late Miocene Andean plateau (AP). Here we report on paleoclimate simulations of Andean surface uplift with an atmospheric general circulation model (GCM) that tracks oxygen isotopes in vapor. The GCM predicts changes in atmospheric circulation and rainfall that influence AP isotopic source and amount effects. On eastern AP slopes, summer convective precipitation increases by up to 6 millimeters per day (>500%) for plateau elevations that are greater than about 2000 meters. High precipitation rates enhance the isotope amount effect, leading to a decrease in precipitation delta18O at high elevations and an increase in delta18O lapse rate. Our results indicate that late Miocene delta18O depletion reflects initiation and intensification of convective rainfall.

7.
Science ; 310(5754): 1668-70, 2005 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-16339442

RESUMO

Alpine glaciation and river incision control the topography of mountain ranges, but their relative contributions have been debated for years. Apatite 4He/3He thermochronometry tightly constrains the timing and rate of glacial erosion within one of the largest valleys in the southern Coast Mountains of British Columbia, Canada. Five proximate samples require accelerated denudation of the Klinaklini Valley initiating 1.8 +/- 0.2 million years ago (Ma). At least 2 kilometers of overlying rock were removed from the valley at >/=5 millimeters per year, indicating that glacial valley deepening proceeded >/=6 times as fast as erosion rates before approximately 1.8 Ma. This intense erosion may be related to a global transition to enhanced climate instability approximately 1.9 Ma.

8.
Nature ; 426(6967): 645-7, 2003 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-14668859

RESUMO

Past studies of tectonically active mountain ranges have suggested strong coupling and feedbacks between climate, tectonics and topography. For example, rock uplift generates topographic relief, thereby enhancing precipitation, which focuses erosion and in turn influences rates and spatial patterns of further rock uplift. Although theoretical links between climate, erosion and uplift have received much attention, few studies have shown convincing correlations between observable indices of these processes on mountain-range scales. Here we show that strongly varying long-term (>10(6)-10(7) yr) erosion rates inferred from apatite (U-Th)/He cooling ages across the Cascades mountains of Washington state closely track modern mean annual precipitation rates. Erosion and precipitation rates vary over an order of magnitude across the range with maxima of 0.33 mm yr(-1) and 3.5 m yr(-1), respectively, with both maxima located 50 km west (windward) of the topographic crest of the range. These data demonstrate a strong coupling between precipitation and long-term erosion rates on the mountain-range scale. If the range is currently in topographic steady state, rock uplift on the west flank is three to ten times faster than elsewhere in the range, possibly in response to climatically focused erosion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA