Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
iScience ; 26(3): 106055, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36852274

RESUMO

Although new genomics-based pipelines have potential to augment antibody discovery, these methods remain in their infancy due to an incomplete understanding of the selection process that governs B cell clonal selection, expansion, and antigen specificity. Furthermore, it remains unknown how factors such as aging and reduction of tolerance influence B cell selection. Here we perform single-cell sequencing of antibody repertoires and transcriptomes of murine B cells following immunizations with a model therapeutic antigen target. We determine the relationship between antibody repertoires, gene expression signatures, and antigen specificity across 100,000 B cells. Recombinant expression and characterization of 227 monoclonal antibodies revealed the existence of clonally expanded and class-switched antigen-specific B cells that were more frequent in young mice. Although integrating multiple repertoire features such as germline gene usage and transcriptional signatures failed to distinguish antigen-specific from nonspecific B cells, other features such as immunoglobulin G (IgG) subtype and sequence composition correlated with antigen specificity.

2.
Acta Neuropathol ; 145(3): 335-355, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36695896

RESUMO

B cells contribute to the pathogenesis of both cellular- and humoral-mediated central nervous system (CNS) inflammatory diseases through a variety of mechanisms. In such conditions, B cells may enter the CNS parenchyma and contribute to local tissue destruction. It remains unexplored, however, how infection and autoimmunity drive transcriptional phenotypes, repertoire features, and antibody functionality. Here, we profiled B cells from the CNS of murine models of intracranial (i.c.) viral infections and autoimmunity. We identified a population of clonally expanded, antibody-secreting cells (ASCs) that had undergone class-switch recombination and extensive somatic hypermutation following i.c. infection with attenuated lymphocytic choriomeningitis virus (rLCMV). Recombinant expression and characterisation of these antibodies revealed specificity to viral antigens (LCMV glycoprotein GP), correlating with ASC persistence in the brain weeks after resolved infection. Furthermore, these virus-specific ASCs upregulated proliferation and expansion programs in response to the conditional and transient induction of the LCMV GP as a neo-self antigen by astrocytes. This class-switched, clonally expanded, and mutated population persisted and was even more pronounced when peripheral B cells were depleted prior to autoantigen induction in the CNS. In contrast, the most expanded B cell clones in mice with persistent expression of LCMV GP in the CNS did not exhibit neo-self antigen specificity, potentially a consequence of local tolerance induction. Finally, a comparable population of clonally expanded, class-switched, and proliferating ASCs was detected in the cerebrospinal fluid of relapsing multiple sclerosis (RMS) patients. Taken together, our findings support the existence of B cells that populate the CNS and are capable of responding to locally encountered autoantigens.


Assuntos
Células Produtoras de Anticorpos , Autoantígenos , Camundongos , Animais , Linfócitos B , Vírus da Coriomeningite Linfocítica , Encéfalo
5.
Cell ; 185(21): 4008-4022.e14, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36150393

RESUMO

The continual evolution of SARS-CoV-2 and the emergence of variants that show resistance to vaccines and neutralizing antibodies threaten to prolong the COVID-19 pandemic. Selection and emergence of SARS-CoV-2 variants are driven in part by mutations within the viral spike protein and in particular the ACE2 receptor-binding domain (RBD), a primary target site for neutralizing antibodies. Here, we develop deep mutational learning (DML), a machine-learning-guided protein engineering technology, which is used to investigate a massive sequence space of combinatorial mutations, representing billions of RBD variants, by accurately predicting their impact on ACE2 binding and antibody escape. A highly diverse landscape of possible SARS-CoV-2 variants is identified that could emerge from a multitude of evolutionary trajectories. DML may be used for predictive profiling on current and prospective variants, including highly mutated variants such as Omicron, thus guiding the development of therapeutic antibody treatments and vaccines for COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Humanos , Mutação , Pandemias , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
6.
Genes Immun ; 23(6): 183-195, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36028771

RESUMO

Adaptive immune repertoires are composed by the ensemble of B and T-cell receptors within an individual, reflecting both past and current immune responses. Recent advances in single-cell sequencing enable recovery of the complete adaptive immune receptor sequences in addition to transcriptional information. Here, we recovered transcriptome and immune repertoire information for polyclonal T follicular helper cells following lymphocytic choriomeningitis virus (LCMV) infection, CD8+ T cells with binding specificity restricted to two distinct LCMV peptides, and B and T cells isolated from the nervous system in the context of experimental autoimmune encephalomyelitis. We could relate clonal expansion, germline gene usage, and clonal convergence to cell phenotypes spanning activation, memory, naive, antibody secretion, T-cell inflation, and regulation. Together, this dataset provides a resource for immunologists that can be integrated with future single-cell immune repertoire and transcriptome sequencing datasets.


Assuntos
Autoimunidade , Coriomeningite Linfocítica , Animais , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Coriomeningite Linfocítica/genética , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos , Receptores de Antígenos de Linfócitos T/genética
7.
BMC Genomics ; 23(1): 289, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410128

RESUMO

BACKGROUND: The continued spread of SARS-CoV-2 and emergence of new variants with higher transmission rates and/or partial resistance to vaccines has further highlighted the need for large-scale testing and genomic surveillance. However, current diagnostic testing (e.g., PCR) and genomic surveillance methods (e.g., whole genome sequencing) are performed separately, thus limiting the detection and tracing of SARS-CoV-2 and emerging variants. RESULTS: Here, we developed DeepSARS, a high-throughput platform for simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2 by the integration of molecular barcoding, targeted deep sequencing, and computational phylogenetics. DeepSARS enables highly sensitive viral detection, while also capturing genomic diversity and viral evolution. We show that DeepSARS can be rapidly adapted for identification of emerging variants, such as alpha, beta, gamma, and delta strains, and profile mutational changes at the population level. CONCLUSIONS: DeepSARS sets the foundation for quantitative diagnostics that capture viral evolution and diversity. DeepSARS uses molecular barcodes (BCs) and multiplexed targeted deep sequencing (NGS) to enable simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2. Image was created using Biorender.com .


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Genômica , Humanos , Mutação , SARS-CoV-2/genética , Sequenciamento Completo do Genoma
8.
Proc Natl Acad Sci U S A ; 119(18): e2113766119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35486691

RESUMO

The capacity of humoral B cell-mediated immunity to effectively respond to and protect against pathogenic infections is largely driven by the presence of a diverse repertoire of polyclonal antibodies in the serum, which are produced by plasma cells (PCs). Recent studies have started to reveal the balance between deterministic mechanisms and stochasticity of antibody repertoires on a genotypic level (i.e., clonal diversity, somatic hypermutation, and germline gene usage). However, it remains unclear if clonal selection and expansion of PCs follow any deterministic rules or are stochastic with regards to phenotypic antibody properties (i.e., antigen-binding, affinity, and epitope specificity). Here, we report on the in-depth genotypic and phenotypic characterization of clonally expanded PC antibody repertoires following protein immunization. We find that clonal expansion drives antigen specificity of the most expanded clones (top ∼10), whereas among the rest of the clonal repertoire antigen specificity is stochastic. Furthermore, we report both on a polyclonal repertoire and clonal lineage level that antibody-antigen binding affinity does not correlate with clonal expansion or somatic hypermutation. Last, we provide evidence for convergence toward targeting dominant epitopes despite clonal sequence diversity among the most expanded clones. Our results highlight the extent to which clonal expansion can be ascribed to antigen binding, affinity, and epitope specificity, and they have implications for the assessment of effective vaccines.


Assuntos
Antígenos , Plasmócitos , Animais , Anticorpos/genética , Afinidade de Anticorpos , Epitopos/genética , Camundongos
9.
Lancet Infect Dis ; 22(6): 813-820, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35305699

RESUMO

BACKGROUND: The SARS-CoV-2 omicron (B.1.1.529) variant, which was first identified in November, 2021, spread rapidly in many countries, with a spike protein highly diverged from previously known variants, and raised concerns that this variant might evade neutralising antibody responses. We therefore aimed to characterise the sensitivity of the omicron variant to neutralisation. METHODS: For this cross-sectional study, we cloned the sequence encoding the omicron spike protein from a diagnostic sample to establish an omicron pseudotyped virus neutralisation assay. We quantified the neutralising antibody ID50 (the reciprocal dilution that produces 50% inhibition) against the omicron spike protein, and the fold-change in ID50 relative to the spike of wild-type SARS-CoV-2 (ie, the pandemic founder variant), for one convalescent reference plasma pool (WHO International Standard for anti-SARS-CoV-2 immunoglobulin [20/136]), three reference serum pools from vaccinated individuals, and two cohorts from Stockholm, Sweden: one comprising previously infected hospital workers (17 sampled in November, 2021, after vaccine rollout and nine in June or July, 2020, before vaccination) and one comprising serum from 40 randomly sampled blood donors donated during week 48 (Nov 29-Dec 5) of 2021. Furthermore, we assessed the neutralisation of omicron by five clinically relevant monoclonal antibodies (mAbs). FINDINGS: Neutralising antibody responses in reference sample pools sampled shortly after infection or vaccination were substantially less potent against the omicron variant than against wild-type SARS-CoV-2 (seven-fold to 42-fold reduction in ID50 titres). Similarly, for sera obtained before vaccination in 2020 from a cohort of convalescent hospital workers, neutralisation of the omicron variant was low to undetectable (all ID50 titres <20). However, in serum samples obtained in 2021 from two cohorts in Stockholm, substantial cross-neutralisation of the omicron variant was observed. Sera from 17 hospital workers after infection and subsequent vaccination had a reduction in average potency of only five-fold relative to wild-type SARS-CoV-2 (geometric mean ID50 titre 495 vs 105), and two donors had no reduction in potency. A similar pattern was observed in randomly sampled blood donors (n=40), who had an eight-fold reduction in average potency against the omicron variant compared with wild-type SARS-CoV-2 (geometric mean ID50 titre 369 vs 45). We found that the omicron variant was resistant to neutralisation (50% inhibitory concentration [IC50] >10 µg/mL) by mAbs casirivimab (REGN-10933), imdevimab (REGN-10987), etesevimab (Ly-CoV016), and bamlanivimab (Ly-CoV555), which form part of antibody combinations used in the clinic to treat COVID-19. However, S309, the parent of sotrovimab, retained most of its activity, with only an approximately two-fold reduction in potency against the omicron variant compared with ancestral D614G SARS-CoV-2 (IC50 0·1-0·2 µg/mL). INTERPRETATION: These data highlight the extensive, but incomplete, evasion of neutralising antibody responses by the omicron variant, and suggest that boosting with licensed vaccines might be sufficient to raise neutralising antibody titres to protective levels. FUNDING: European Union Horizon 2020 research and innovation programme, European and Developing Countries Clinical Trials Partnership, SciLifeLab, and the Erling-Persson Foundation.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/epidemiologia , Vacinas contra COVID-19 , Estudos Transversais , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
10.
Cell Rep ; 38(3): 110242, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34998467

RESUMO

Characterization of COVID-19 antibodies has largely focused on memory B cells; however, it is the antibody-secreting plasma cells that are directly responsible for the production of serum antibodies, which play a critical role in resolving SARS-CoV-2 infection. Little is known about the specificity of plasma cells, largely because plasma cells lack surface antibody expression, thereby complicating their screening. Here, we describe a technology pipeline that integrates single-cell antibody repertoire sequencing and mammalian display to interrogate the specificity of plasma cells from 16 convalescent patients. Single-cell sequencing allows us to profile antibody repertoire features and identify expanded clonal lineages. Mammalian display screening is used to reveal that 43 antibodies (of 132 candidates) derived from expanded plasma cell lineages are specific to SARS-CoV-2 antigens, including antibodies with high affinity to the SARS-CoV-2 receptor-binding domain (RBD) that exhibit potent neutralization and broad binding to the RBD of SARS-CoV-2 variants (of concern/interest).


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Plasmócitos/metabolismo , SARS-CoV-2/imunologia , Análise de Célula Única/métodos , Animais , Anticorpos Antivirais/isolamento & purificação , COVID-19/imunologia , COVID-19/prevenção & controle , Células Cultivadas , Estudos de Coortes , Biblioteca Gênica , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mamíferos , Testes de Neutralização , Biblioteca de Peptídeos , Plasmócitos/química
11.
Eur J Immunol ; 52(2): 297-311, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727578

RESUMO

Plasma cells and their secreted antibodies play a central role in the long-term protection against chronic viral infection. However, due to experimental limitations, a comprehensive description of linked genotypic, phenotypic, and antibody repertoire features of plasma cells (gene expression, clonal frequency, virus specificity, and affinity) has been challenging to obtain. To address this, we performed single-cell transcriptome and antibody repertoire sequencing of the murine BM plasma cell population following chronic lymphocytic choriomeningitis virus infection. Our single-cell sequencing approach recovered full-length and paired heavy- and light-chain sequence information for thousands of plasma cells and enabled us to perform recombinant antibody expression and specificity screening. Antibody repertoire analysis revealed that, relative to protein immunization, chronic infection led to increased levels of clonal expansion, class-switching, and somatic variants. Furthermore, antibodies from the highly expanded and class-switched (IgG) plasma cells were found to be specific for multiple viral antigens and a subset of clones exhibited cross-reactivity to nonviral and autoantigens. Integrating single-cell transcriptome data with antibody specificity suggested that plasma cell transcriptional phenotype was correlated to viral antigen specificity. Our findings demonstrate that chronic viral infection can induce and sustain plasma cell clonal expansion, combined with significant somatic hypermutation, and can generate cross-reactive antibodies.


Assuntos
Anticorpos Antivirais , Seleção Clonal Mediada por Antígeno , Cadeias Pesadas de Imunoglobulinas , Cadeias Leves de Imunoglobulina , Coriomeningite Linfocítica , Vírus da Coriomeningite Linfocítica/imunologia , Plasmócitos/imunologia , Análise de Célula Única , Animais , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Doença Crônica , Feminino , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/imunologia , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/imunologia , Camundongos
12.
Front Immunol ; 12: 701085, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322127

RESUMO

COVID-19 disease outcome is highly dependent on adaptive immunity from T and B lymphocytes, which play a critical role in the control, clearance and long-term protection against SARS-CoV-2. To date, there is limited knowledge on the composition of the T and B cell immune receptor repertoires [T cell receptors (TCRs) and B cell receptors (BCRs)] and transcriptomes in convalescent COVID-19 patients of different age groups. Here, we utilize single-cell sequencing (scSeq) of lymphocyte immune repertoires and transcriptomes to quantitatively profile the adaptive immune response in COVID-19 patients of varying age. We discovered highly expanded T and B cells in multiple patients, with the most expanded clonotypes coming from the effector CD8+ T cell population. Highly expanded CD8+ and CD4+ T cell clones show elevated markers of cytotoxicity (CD8: PRF1, GZMH, GNLY; CD4: GZMA), whereas clonally expanded B cells show markers of transition into the plasma cell state and activation across patients. By comparing young and old convalescent COVID-19 patients (mean ages = 31 and 66.8 years, respectively), we found that clonally expanded B cells in young patients were predominantly of the IgA isotype and their BCRs had incurred higher levels of somatic hypermutation than elderly patients. In conclusion, our scSeq analysis defines the adaptive immune repertoire and transcriptome in convalescent COVID-19 patients and shows important age-related differences implicated in immunity against SARS-CoV-2.


Assuntos
Envelhecimento/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , SARS-CoV-2/fisiologia , Imunidade Adaptativa , Adulto , Idoso , Células Cultivadas , Convalescença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos T/genética , Análise de Célula Única , Transcriptoma , Adulto Jovem
13.
Nat Biomed Eng ; 5(6): 600-612, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33859386

RESUMO

The optimization of therapeutic antibodies is time-intensive and resource-demanding, largely because of the low-throughput screening of full-length antibodies (approximately 1 × 103 variants) expressed in mammalian cells, which typically results in few optimized leads. Here we show that optimized antibody variants can be identified by predicting antigen specificity via deep learning from a massively diverse space of antibody sequences. To produce data for training deep neural networks, we deep-sequenced libraries of the therapeutic antibody trastuzumab (about 1 × 104 variants), expressed in a mammalian cell line through site-directed mutagenesis via CRISPR-Cas9-mediated homology-directed repair, and screened the libraries for specificity to human epidermal growth factor receptor 2 (HER2). We then used the trained neural networks to screen a computational library of approximately 1 × 108 trastuzumab variants and predict the HER2-specific subset (approximately 1 × 106 variants), which can then be filtered for viscosity, clearance, solubility and immunogenicity to generate thousands of highly optimized lead candidates. Recombinant expression and experimental testing of 30 randomly selected variants from the unfiltered library showed that all 30 retained specificity for HER2. Deep learning may facilitate antibody engineering and optimization.


Assuntos
Antígenos/química , Aprendizado Profundo , Engenharia de Proteínas/métodos , Receptor ErbB-2/química , Trastuzumab/química , Sequência de Aminoácidos , Animais , Afinidade de Anticorpos , Especificidade de Anticorpos , Antígenos/genética , Antígenos/imunologia , Sistemas CRISPR-Cas , Humanos , Hibridomas/química , Hibridomas/imunologia , Mutagênese Sítio-Dirigida , Ligação Proteica , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Reparo de DNA por Recombinação , Análise de Sequência de Proteína , Trastuzumab/genética , Trastuzumab/imunologia
14.
iScience ; 23(9): 101519, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32905040

RESUMO

Advances in reading, writing, and editing DNA are providing unprecedented insights into the complexity of immunological systems. This combination of systems and synthetic biology methods is enabling the quantitative and precise understanding of molecular recognition in adaptive immunity, thus providing a framework for reprogramming immune responses for translational medicine. In this review, we will highlight state-of-the-art methods such as immune repertoire sequencing, immunoinformatics, and immunogenomic engineering and their application toward adaptive immunity. We showcase novel and interdisciplinary approaches that have the promise of transforming the design and breadth of molecular and cellular immunotherapies.

15.
Front Immunol ; 10: 2630, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798579

RESUMO

Immune cell therapies based on the integration of synthetic antigen receptors comprise a powerful strategy for the treatment of diverse diseases, most notably T cells engineered to express chimeric antigen receptors (CAR) for targeted cancer therapy. In addition to T lymphocytes, B lymphocytes may also represent valuable immune cells that can be engineered for therapeutic purposes such as protein replacement therapy or recombinant antibody production. In this article, we report a promising concept for the molecular design, optimization, and genomic integration of a novel class of synthetic antigen receptors, chimeric B cell receptors (CBCR). We initially optimized CBCR expression and detection by modifying the extracellular surface tag, the transmembrane regions and intracellular signaling domains. For this purpose, we stably integrated a series of CBCR variants using CRISPR-Cas9 into immortalized B cell hybridomas. Subsequently, we developed a reliable and consistent pipeline to precisely introduce cassettes of several kb size into the genome of primary murine B cells also using CRISPR-Cas9 induced HDR. Finally, we were able to show the robust surface expression and antigen recognition of a synthetic CBCR in primary B cells. We anticipate CBCRs and our approach for engineering primary B cells will be a valuable tool for the advancement of future B cell- based immune cell therapies.


Assuntos
Linfócitos B , Edição de Genes/métodos , Engenharia de Proteínas/métodos , Receptores de Antígenos de Linfócitos B/genética , Receptores Artificiais/genética , Animais , Sistemas CRISPR-Cas , Camundongos , Receptores de Antígenos de Linfócitos B/imunologia , Receptores Artificiais/imunologia
16.
Mol Ther Nucleic Acids ; 10: 1-8, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29499925

RESUMO

The CRISPR/Cas9 prokaryotic adaptive immune system and its swift repurposing for genome editing enables modification of any prespecified genomic sequence with unprecedented accuracy and efficiency, including targeted gene repair. We used the CRISPR/Cas9 system for targeted repair of patient-specific point mutations in the Cytochrome b-245 heavy chain gene (CYBB), whose inactivation causes chronic granulomatous disease (XCGD)-a life-threatening immunodeficiency disorder characterized by the inability of neutrophils and macrophages to produce microbicidal reactive oxygen species (ROS). We show that frameshift mutations can be effectively repaired in hematopoietic cells by non-integrating lentiviral vectors carrying RNA-guided Cas9 endonucleases (RGNs). Because about 25% of most inherited blood disorders are caused by frameshift mutations, our results suggest that up to a quarter of all patients suffering from monogenic blood disorders could benefit from gene therapy employing personalized, donor template-free RGNs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA