Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Heliyon ; 10(15): e35748, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170498

RESUMO

Utilizing waste heat to drive thermodynamic systems is imperative for improving energy efficiency, thereby improving sustainability. A combined cooling and power systems (CCP) utilizes heat from a temperature source to deliver both power and cooling. However, CCP systems utilizing LNG cold energy suffers from low second law efficiency due to significant temperature differences. To address this, an "Advanced Power and Cooling with LNG Utilization (ACPLU)" system is proposed, integrating a cascaded transcritical carbon dioxide (TCO2)-LNG cycle with an Organic Rankine cycle (ORC) for improved power generation and an absorption refrigeration system (ARS) for simultaneous cooling. This study evaluates the second law efficiency, net work output, and exergy destruction performance through a sensitivity analysis, optimizing variables such as heat source temperature, superheater temperature difference, ORC and CO2 turbine inlet and condenser pressures, evaporator temperature, and pinch point temperatures of heat exchangers and generator. Compared to previous studies on CCP systems, the ACPLU shows a superior performance, with a second law efficiency of 27.3 % and a net work output of 11.76 MW. Cyclopentane as an ORC working fluid resulted in the highest second law efficiency of 29.06 % and net work output of 12.27 MW. Parametric analysis suggested that heat source temperature significantly impacts net power output. The exergy analysis concluded that a high-pressure ratio and good thermal match between the heat exchangers enhance overall performance. Utilizing artificial neural network (ANN) to produce a multiple-input-multiple-output (MIMO) objective function and performing multi-objective optimization (MOO) using genetic algorithm (GA), an improved second law efficiency and net power output by 28.11 % and 14.16 MW respectively, with pentane as the working fluid, is demonstrated. An average cost rate of 9.121 $/GJ was observed through a thermo-economic analysis. The ACPLU system is promising for medium temperature waste heat recovery, such as, pharmaceutical manufacturing plants.

2.
Heliyon ; 10(11): e31655, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38845952

RESUMO

The post-pandemic energy crisis and ever-increasing environmental degradation necessitate researchers to scrutinize refrigeration systems, major contributors to these issues, for minimal environmental impact and maximum performance. Thus, this study aims to comprehensively examine a triple cascade refrigeration system (TCRS) equipped with hydrocarbon refrigerants (1-butene/Heptane/m-Xylene). This system is specifically designed for ultra-low temperature applications, including vaccine storage, quick-freezing, frozen food preservation, cryogenic processes, and gas liquefaction. The investigation integrates conventional thermodynamic analysis with economic and environmental impact assessments, and finally multi-objective optimization (MOO) to ascertain optimal operating conditions for the system. The effect of (1) evaporator temperature, Tevap (2) condenser temperature, Tcond (3) Lower Temperature Circuit (LTC) condenser temperature, TLTC (4) Mid Temperature Circuit (MTC) condenser temperature, TMTC and (5) Cascade Condenser temperature difference, Δ T on three objective functions (COP, exergy efficiency, and overall plant cost) have been investigated employing a parametric analysis. Subsequently, quadratic equations for these objective functions are generated using the Box-Behnken method, and MOO utilizing the Genetic algorithm has been performed to maximize COP and exergy efficiency while minimizing the overall cost rate. The decision-making techniques TOPSIS and LINMAP are used to retrieve a unique solution from the Pareto Front, and the system performance has been assessed at the optimal point. The optimization result demonstrates that for the 10-kW capacity TCRS, COP, exergy efficiency, and total plant cost are 0.71, 0.51, and 38262.05 $/year respectively, at optimum condition (Tevap = -101.023 °C , Tcond = 36.545 °C , TLTC = - 69.047 °C and TMTC = - 34.651 °C ). Exergy analysis identifies HTC compressor (19.3 %) and throttle valve (15.5 %) as key contributors to total exergy destruction, while economic analysis underscores capital and maintenance costs (72 %) as the primary contributors to the overall cost, with evaporator (43 %) and condenser (20 %) accounting for 63 % of this cost.

3.
Evol Appl ; 17(6): e13728, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38884021

RESUMO

Given the multitude of challenges Earth is facing, sustainability science is of key importance to our continued existence. Evolution is the fundamental biological process underlying the origin of all biodiversity. This phylogenetic diversity fosters the resilience of ecosystems to environmental change, and provides numerous resources to society, and options for the future. Genetic diversity within species is also key to the ability of populations to evolve and adapt to environmental change. Yet, the value of evolutionary processes and the consequences of their impairment have not generally been considered in sustainability research. We argue that biological evolution is important for sustainability and that the concepts, theory, data, and methodological approaches used in evolutionary biology can, in crucial ways, contribute to achieving the UN Sustainable Development Goals (SDGs). We discuss how evolutionary principles are relevant to understanding, maintaining, and improving Nature Contributions to People (NCP) and how they contribute to the SDGs. We highlight specific applications of evolution, evolutionary theory, and evolutionary biology's diverse toolbox, grouped into four major routes through which evolution and evolutionary insights can impact sustainability. We argue that information on both within-species evolutionary potential and among-species phylogenetic diversity is necessary to predict population, community, and ecosystem responses to global change and to make informed decisions on sustainable production, health, and well-being. We provide examples of how evolutionary insights and the tools developed by evolutionary biology can not only inspire and enhance progress on the trajectory to sustainability, but also highlight some obstacles that hitherto seem to have impeded an efficient uptake of evolutionary insights in sustainability research and actions to sustain SDGs. We call for enhanced collaboration between sustainability science and evolutionary biology to understand how integrating these disciplines can help achieve the sustainable future envisioned by the UN SDGs.

4.
Heliyon ; 10(7): e28698, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38617919

RESUMO

A numerical investigation of a curved trapezoidal-corrugated channel with E-shaped baffles is conducted for thermal-hydraulic performance and flow behavior involving the use of single and hybrid nanofluids. This investigation introduces a unique integrated methodology for enhancing heat transfer efficiency by simultaneously combining geometric modifications and optimizing coolant utilization. To simulate turbulent, single-phase flow in three-dimensional corrugated channels, a computational model has been developed. The model considers a Reynolds number (Re) range of 5 × 103≤Re ≤ 35 × 103 and implies a uniform heat flux of 1000 W/m2. A commercial software, Ansys fluent was used in order to simulate the fluid flow by setting the inlet temperature at 300 K and velocity according to the Reynolds number. The continuity equation, momentum equation, and energy equations are discretized using a second-order upwind method. The equation's residual has been assigned a value of 1 × 106 for absolute criteria. The study evaluates the thermal-hydraulic performance of single nanofluids (Al2O3/water, CuO/water, SiO2/water) and hybrid nanofluids (Al2O3-Cu/water, TiO2-SiO2/EG-water) at varying volume fractions (1%≤φ ≤ 5%). Additionally, the investigation examines the effects of corrugations, baffles, and geometric parameter: blockage ratio (BR = 0.10, 0.15, 0.25). The findings demonstrate that the effects of baffles and corrugations can lead to the creation of vortex flow and greater turbulence, which can promote heat transfer enhancement. Various nanofluids demonstrated a significant rise in the Nusselt number, ranging from 35% to 60%, when compared to water in a curved corrugated channel. Additionally, a lower BR resulted in a smaller but still notable gain of 15%-19%. An effective heat exchanger that results in a significant energy dissipation is measured by the energy ratio (ER). The use of corrugated channels with narrow baffles has been found to consistently outperform smooth channels in terms of thermo-hydraulic parameters, leading to enhanced heat transfer. Using BR = 0.10 over 0.25 resulted in an increase in ΔP, HTC, and ER of 48.44%, 18.71%, and 45.86%, respectively. The implementation of a hybrid nanofluid consisting of 1% (20% TiO2-80% SiO2)/(60% Water-40% EG) volume fraction in a curved corrugated channel with baffles resulted in a significant improvement of 36.49% in thermal performance. This finding suggests that the aforementioned nanofluid composition and design parameter, characterized by a blockage ratio of 0.10, are the most effective in enhancing thermal performance.

5.
Microorganisms ; 11(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38138042

RESUMO

Hepatitis A virus (HAV) and Hepatitis E virus (HEV) are transmitted through the fecal-oral route. HAV outbreaks and one HEV outbreak have been reported in Egypt. However, the impact of HAV-HEV co-infection is not known. In this study, we assessed HEV markers in acute HAV-infected patients (n = 57) enrolled in Assiut University hospitals. We found that 36.8% of HAV-infected patients were also positive for HEV markers (anti-HEV IgM and HEV RNA), while 63.2% of the patients were HAV mono-infected. Demographic and clinical criteria were comparable in both HAV mono-infected patients and HAV-HEV co-infected patients. Although liver enzymes were not significantly different between the two groups, liver transaminases were higher in the co-infected patients. Six patients developed acute liver failure (ALF); five of them were HAV-HEV-co-infected patients. The relative risk of ALF development was 8.5 times higher in HAV-HEV co-infection compared to mono-infection. Three cases of ALF caused by HAV-HEV co-infection were reported in children (below 18 years) and two cases were reported in adults. All patients developed jaundice, coagulopathy, and encephalopathy; all were living in rural communities. In conclusion: HAV-HEV co-infection can be complicated by ALF. The risk of ALF development in HAV-infected patients is higher when coinfection with HEV is present.

6.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139439

RESUMO

Viral infections trigger inflammation by controlling ATP release. CD39 ectoenzymes hydrolyze ATP/ADP to AMP, which is converted by CD73 into anti-inflammatory adenosine (ADO). ADO is an anti-inflammatory and immunosuppressant molecule which can enhance viral persistence and severity. The CD39-CD73-adenosine axis contributes to the immunosuppressive T-reg microenvironment and may affect COVID-19 disease progression. Here, we investigated the link between CD39 expression, mostly on T-regs, and levels of CD73, adenosine, and adenosine receptors with COVID-19 severity and progression. Our study included 73 hospitalized COVID-19 patients, of which 33 were moderately affected and 40 suffered from severe infection. A flow cytometric analysis was used to analyze the frequency of T-regulatory cells (T-regs), CD39+ T-regs, and CD39+CD4+ T-cells. Plasma concentrations of adenosine, IL-10, and TGF-ß were quantified via an ELISA. An RT-qPCR was used to analyze the gene expression of CD73 and adenosine receptors (A1, A2A, A2B, and A3). T-reg cells were higher in COVID-19 patients compared to healthy controls (7.4 ± 0.79 vs. 2.4 ± 0.28; p < 0.0001). Patients also had a higher frequency of the CD39+ T-reg subset. In addition, patients who suffered from a severe form of the disease had higher CD39+ T-regs compared with moderately infected patients. CD39+CD4+ T cells were increased in patients compared to the control group. An analysis of serum adenosine levels showed a marked decrease in their levels in patients, particularly those suffering from severe illness. However, this was paralleled with a marked decline in the expression levels of CD73. IL-10 and TGF-ß levels were higher in COVID-19; in addition, their values were also higher in the severe group. In conclusion, there are distinct immunological alterations in CD39+ lymphocyte subsets and a dysregulation in the adenosine signaling pathway in COVID-19 patients which may contribute to immune dysfunction and disease progression. Understanding these immunological alterations in the different immune cell subsets and adenosine signaling provides valuable insights into the pathogenesis of the disease and may contribute to the development of novel therapeutic approaches targeting specific immune mechanisms.


Assuntos
Adenosina , COVID-19 , Linfócitos T Reguladores , Humanos , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Anti-Inflamatórios , Antígenos CD/genética , Antígenos CD/metabolismo , Progressão da Doença , Interleucina-10 , Receptores Purinérgicos P1/genética , Fator de Crescimento Transformador beta/genética , Linfócitos T Reguladores/metabolismo
7.
Plants (Basel) ; 12(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005769

RESUMO

Coriandrum sativum L. is a globally significant economic herb with medicinal and aromatic properties. While coriander leaf blight disease was previously confined to India and the USA, this study presents new evidence of its outbreak in Africa and the Middle East caused by Alternaria dauci. Infected leaves display irregular chlorotic to dark brown necrotic lesions along their edges, resulting in leaf discoloration, collapse, and eventual death. The disease also impacts inflorescences and seeds, significantly reducing seed quality. Koch's postulates confirmed the pathogenicity of the fungus through the re-isolation of A. dauci from artificially infected leaves, and its morphology aligns with typical A. dauci features. Notably, this study identified strong lytic activity (cellulase: 23.76 U, xylanase: 12.83 U, pectinase: 51.84 U, amylase: 9.12 U, and proteinase: 5.73 U), suggesting a correlation with pathogenicity. Molecular characterization using ITS (ON171224) and the specific Alt-a-1 gene (OR236142) supports the fungal morphology. This research provides the first comprehensive documentation of the pathological, lytic, and molecular evidence of A. dauci leaf blight disease on coriander. Future investigations should prioritize the development of resistant coriander varieties and sustainable disease management strategies, including the use of advanced molecular techniques for swift and accurate disease diagnosis to protect coriander from the devastating impact of A. dauci.

8.
Chem Asian J ; : e202300625, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37609855

RESUMO

Layered double hydroxides (LDHs) are promising materials for oxygen evolution reactions (OERs), a key component of water splitting to produce hydrogen and oxygen via water electrolysis. However, the performance of LDHs can be limited by their low surface area and poor accessibility of active sites. In this work, we synthesized highly exfoliated 2D NiAl-LDHs by aqueous miscible solvent treatment method (AMOST) and compared its electrocatalytic efficiency with its analogue synthesised via slow urea hydrolysis. We demonstrate that the exfoliated 2D LDHs prepared by AMOST method have a higher surface area and more active sites than the crystalline LDHs obtained through urea hydrolysis, resulting in a superior OER activity and efficiency. The exfoliated 2D LDHs required a lower overpotential of 280 mV to reach a current density of 50 mA cm-2 and it also outperformed IrO2 , a benchmark OER catalyst, in terms of overpotential and stability. We demonstrate that the physicochemical properties of nanosheets derived from NIAl-LDH-based materials are strongly influenced by the synthetic methodology, which affects the exfoliation degree, surface area and active site density. These factors are crucial for improving the OER catalytic performance of these materials, as shown by our results.

9.
Viruses ; 15(6)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37376678

RESUMO

Viruses can trigger glomerulonephritis (GN) development. Hepatitis viruses, especially Hepatitis C virus and Hepatitis B viruses, are examples of the viruses that trigger GN initiation or progression. However, the proof of a correlation between GN and Hepatitis E virus infection is not clear. Some studies confirmed the development of GN during acute or chronic HEV infections, mainly caused by genotype 3. While others reported that there is no relation between HEV exposure and GN development. A recent study showed that a reduced glomerular filtration rate was developed in 16% of acute HEV genotype 1 (HEV-1) infections that returned to normal during recovery. HEV-1 is endemic in Egypt with a high seroprevalence among villagers and pregnant women. There is no available data about a link between HEV and GN in Egypt. METHODS: GN patients (n = 43) and matched healthy subjects (n = 36) enrolled in Assiut University hospitals were included in this study. Blood samples were screened for hepatotropic pathogens. Tests for HEV markers such as HEV RNA and anti-HEV antibodies (IgM and IgG) were performed. Laboratory parameters were compared in HEV-seropositive and HEV-seronegative GN patients. RESULTS: Anti-HEV IgG was detected in 26 (60.5%) out of 43 GN patients. HEV seroprevalence was significantly higher in GN than in healthy controls, suggesting that HEV exposure is a risk factor for GN development. None of the GN patients nor the healthy subjects were positive for anti-HEV IgM or HEV RNA. There was no significant difference between seropositive and seronegative GN patients in terms of age, gender, albumin, kidney function profiles, or liver transaminases. However, anti-HEV IgG positive GN patients had higher bilirubin levels than anti-HEV IgG negative GN patients. HEV-seropositive GN patients had a significantly elevated AST level compared to HEV-seropositive healthy subjects. CONCLUSION: exposure to HEV infection could be complicated by the development of GN.


Assuntos
Glomerulonefrite , Vírus da Hepatite E , Hepatite E , Humanos , Feminino , Gravidez , Vírus da Hepatite E/genética , Estudos Soroepidemiológicos , Hepatite E/complicações , Hepatite E/epidemiologia , Anticorpos Anti-Hepatite , Glomerulonefrite/epidemiologia , RNA Viral , Imunoglobulina M , Imunoglobulina G
10.
Microbiol Resour Announc ; 12(5): e0086322, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37036345

RESUMO

Raoultella ornithinolytica is an emerging pathogen that causes human infections. We report the isolation and genome sequencing of R. ornithinolytica from an oral swab of a Persian pet cat in Dhaka, Bangladesh. The genome length was 5,375,160 bp, with 55.9% G+C content. It carries putative genes associated with resistance to antibiotics and metals.

11.
Plants (Basel) ; 12(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903922

RESUMO

Salvia hispanica L. is an annual herbaceous plant commonly known as "Chia". It has been recommended for therapeutic use because of its use as an excellent source of fatty acids, protein, dietary fibers, antioxidants, and omega-3 fatty acids. A literature survey concerning phytochemical and biological investigations of chia extracts revealed less attention towards the non-polar extracts of S. hispanica L. aerial parts, which motivates us to investigate their phytochemical constituents and biological potentials. The phytochemical investigation of the non-polar fractions of S. hispanica L. aerial parts resulted in the tentative identification of 42 compounds using UPLC-ESI-MS/MS analysis with the isolation of ß-sitosterol (1), betulinic acid (2), oleanolic acid (3), and ß-sitosterol-3-O-ß-D-glucoside (4). GLC-MS analysis of the seeds' oil showed a high concentration of omega-3 fatty acid, with a percentage of 35.64% of the total fatty acid content in the seed oil. The biological results revealed that the dichloromethane fraction showed promising DPPH radical-scavenging activity (IC50 = 14.73 µg/mL), antidiabetic activity with significant inhibition of the α-amylase enzyme (IC50 673.25 µg/mL), and anti-inflammatory activity using in vitro histamine release assay (IC50 61.8 µg/mL). Furthermore, the dichloromethane fraction revealed moderate cytotoxic activity against human lung cancer cell line (A-549), human prostate carcinoma (PC-3), and colon carcinoma (HCT-116) with IC50s 35.9 ± 2.1 µg/mL, 42.4 ± 2.3 µg/mL, and 47.5 ± 1.3 µg/mL, respectively, and antiobesity activity with IC50 59.3 µg/mL, using pancreatic lipase inhibitory assay. In conclusion, this study's findings not only shed light on the phytochemical constituents and biological activities of the non-polar fractions of chia but also should be taken as a basis for the future in vivo and clinical studies on the safety and efficacy of chia and its extracts. Further study should be focused towards the isolation of the active principles of the dichloromethane fraction and studying their efficacy, exact mechanism(s), and safety, which could benefit the pharmaceutical industry and folk medicine practitioners who use this plant to cure diseases.

12.
Pathogens ; 12(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36839551

RESUMO

CD39 is a marker of immune cells such as lymphocytes and monocytes. The CD39/CD73 pathway hydrolyzes ATP into adenosine, which has a potent immunosuppressive effect. CD39 regulates the function of a variety of immunologic cells through the purinergic signaling pathways. CD39+ T cells have been implicated in viral infections, including Human Immunodeficiency Virus (HIV), Cytomegalovirus (CMV), viral hepatitis, and Corona Virus Disease 2019 (COVID-19) infections. The expression of CD39 is an indicator of lymphocyte exhaustion, which develops during chronicity. During RNA viral infections, the CD39 marker can profile the populations of CD4+ T lymphocytes into two populations, T-effector lymphocytes, and T-regulatory lymphocytes, where CD39 is predominantly expressed on the T-regulatory cells. The level of CD39 in T lymphocytes can predict the disease progression, antiviral immune responses, and the response to antiviral drugs. Besides, the percentage of CD39 and CD73 in B lymphocytes and monocytes can affect the status of viral infections. In this review, we investigate the impact of CD39 and CD39-expressing cells on viral infections and how the frequency and percentage of CD39+ immunologic cells determine disease prognosis.

14.
Microorganisms ; 10(9)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36144416

RESUMO

Ralstonia solanacearum is one of the globally significant plant pathogens that infect a wide host range of economically important plants. A study was conducted to evaluate the hypothesis that an avirulent strain of R. solanacearum can act as a biocontrol mediator for managing potato bacterial wilt. Virulent R. solanacearum was isolated and identified (GenBank accession number; OP180100). The avirulent strain was obtained from the virulent strain through storage for 3 weeks until the development of deep red colonies. The virulent strain had higher lytic activity than the avirulent strain. Tubers' treatments by the avirulent strain of R. solanacearum, (supernatant, boiled supernatant, and dead cells) significantly reduced plant disease rating and increased the growth, physiological activities, and biomass of potato compared to the untreated, infected control. The major components detected by GC-MS in the supernatant revealed 10.86% palmitic acid (virulent), and 18.03% 1,3-dioxolane, 2,4,5-trimethyl- (avirulent), whereas the major component in the boiled supernatant was 2-hydroxy-gamma-butyrolactone in the virulent (21.17%) and avirulent (27.78%) strains. This is the first research that assessed the influence of boiled supernatant and dead cells of virulent and avirulent R.solanacearum strains in controlling bacterial wilt disease. Additional work is encouraged for further elucidation of such a topic.

15.
Molecules ; 27(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080312

RESUMO

Root rot is one of the most significant soil and seed-borne fungal diseases, limiting the cultivation of fenugreek plants. Endophytic bacteria and their natural bioproducts have emerged as growth promoters and disease suppressors in the current era. Despite limited research, seeds are a good funder of endophytic microbiomes, which are transmitted from them to other seedling parts, thereby providing a shield against biotic and abiotic anxiety and promoting the growth at early germination and later stages. The current study evaluated the hypothesis that seed endophytic bacteria and their lytic enzymes, growth promotors, and antifungal molecules can induce growth, and inhibit root rot disease development at the same time. The isolation trial from fenugreek seeds revealed a lytic Achromobacter sp., which produces indole acetic acid, has antifungal compounds (e.g., 2-Butanol, 3,3'-oxybis-), and reduces the growth of Rhizoctonia solani by 43.75%. Under the greenhouse and natural field conditions, bacterial cells and/or supernatant improved the growth, physiology, and yield performance of fenugreek plants, and effectively suppressed the progress of root rot disease; this is the first extensive study that uses a new seed-borne endophytic bacterium as a plant-growth-promoting, and biocontrol tool against the sclerotia-forming; R. solani; the causative of fenugreek root rot.


Assuntos
Achromobacter , Trigonella , Antifúngicos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Rhizoctonia , Sementes
16.
Nature ; 608(7923): 586-592, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35859170

RESUMO

The ability to associate temporally segregated information and assign positive or negative valence to environmental cues is paramount for survival. Studies have shown that different projections from the basolateral amygdala (BLA) are potentiated following reward or punishment learning1-7. However, we do not yet understand how valence-specific information is routed to the BLA neurons with the appropriate downstream projections, nor do we understand how to reconcile the sub-second timescales of synaptic plasticity8-11 with the longer timescales separating the predictive cues from their outcomes. Here we demonstrate that neurotensin (NT)-expressing neurons in the paraventricular nucleus of the thalamus (PVT) projecting to the BLA (PVT-BLA:NT) mediate valence assignment by exerting NT concentration-dependent modulation in BLA during associative learning. We found that optogenetic activation of the PVT-BLA:NT projection promotes reward learning, whereas PVT-BLA projection-specific knockout of the NT gene (Nts) augments punishment learning. Using genetically encoded calcium and NT sensors, we further revealed that both calcium dynamics within the PVT-BLA:NT projection and NT concentrations in the BLA are enhanced after reward learning and reduced after punishment learning. Finally, we showed that CRISPR-mediated knockout of the Nts gene in the PVT-BLA pathway blunts BLA neural dynamics and attenuates the preference for active behavioural strategies to reward and punishment predictive cues. In sum, we have identified NT as a neuropeptide that signals valence in the BLA, and showed that NT is a critical neuromodulator that orchestrates positive and negative valence assignment in amygdala neurons by extending valence-specific plasticity to behaviourally relevant timescales.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Aprendizagem , Vias Neurais , Neurotensina , Punição , Recompensa , Complexo Nuclear Basolateral da Amígdala/citologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Cálcio/metabolismo , Sinais (Psicologia) , Plasticidade Neuronal , Neurotensina/metabolismo , Optogenética , Núcleos Talâmicos/citologia , Núcleos Talâmicos/fisiologia
17.
Front Microbiol ; 13: 772417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401430

RESUMO

Plant residuals comprise the natural habitat of the plant pathogen; therefore, attention is currently focusing on biological-based bioprocessing of biomass residuals into benefit substances. The current study focused on the biodegradation of peanut plant residual (PNR) into citric acid (CA) through a mathematical modeling strategy. Novel endophytic Trichoderma longibrachiatum WKA55 (GenBank accession number: MZ014020.1), having lytic (cellulase, protease, and polygalacturonase) activity, and tricalcium phosphate (TCP) solubilization ability were isolated from peanut seeds and used during the fermentation process. As reported by HPLC, the maximum CA (5505.1 µg/g PNR) was obtained after 9 days in the presence of 15.49 mg TCP, and 15.68 mg glucose. GC-MS analysis showed other bioactive metabolites in the filtrate of the fermented PNR. Practically, the crude product (40%) fully inhibited (100%) the growth and spore germination of three mycotoxinogenic fungi. On peanuts, it improved the seed germination (91%), seedling features, and vigor index (70.45%) with a reduction of abnormal seedlings (9.33%). The current study presents the fundamentals for large-scale production in the industry for the sustainable development of PNR biomass as a natural source of bioactive metabolites, and safe consumption of lignocellulosic-proteinaceous biomass, as well. T. longibrachiatum WKA55 was also introduced as a novel CA producer specified on PNR. Application of the resulting metabolite is encouraged on a large scale.

19.
Waste Manag ; 134: 136-148, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34419701

RESUMO

With a population of 165 million, Bangladesh is undergoing rapid industrialization and urban development, and is well on track to move out from the group of least developed countries by 2024. This results in a significant increase in the urban energy needs and the amount of generated waste. Most of the municipal solid waste in Bangladesh is currently deposited in landfills, thereby contaminating nearby cultivable soils. It is desirable to have a system that recovers energy from the municipal solid waste in order to satisfy the increasing energy needs, while simultaneously addressing the land scarcity and pollution issues. This paper proposes using incineration to recover energy from municipal solid waste to produce electricity in the urban areas of Dhaka and Chattogram. A detailed technical analysis involving energy, exergy, exergoeconomic, and emission is presented. The power plants in these two cities show potential capacities of 169 MW and 83 MW respectively, with exergoeconomic factors of 61 %. The results indicate energy and exergy efficiencies of 32 % and 27 %, respectively, and a production cost in the range of 53.9-56.7 USD/MWh which is comparable to the production cost from the current power plants in Bangladesh. The proposed plants also result in a reduction in the greenhouse emissions and exhibit ecological efficiencies of over 87 %.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Bangladesh , Incineração , Centrais Elétricas , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos
20.
Plants (Basel) ; 10(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672364

RESUMO

During preservation, Jerusalem artichoke (JA) tubers are subjected to deterioration by mold fungi under storage, which signifies a serious problem. A new blue mold (Penicillium polonium) was recorded for the first time on JA tubers. Penicillium mold was isolated, identified (morphologically, and molecularly), and deposited in GenBank; (MW041259). The fungus has a multi-lytic capacity, facilitated by various enzymes capable of severely destroying the tuber components. An economic oil-based procedure was applied for preserving and retaining the nutritive value of JA tubers under storage conditions. Caraway and clove essential oils, at a concentration of 2%, were selected based on their strong antifungal actions. JA tubers were treated with individual oils under storage, kept between peat moss layers, and stored at room temperature. Tubers treated with both oils exhibited lower blue mold severity, sprouting and weight loss, and higher levels of carbohydrates, inulin, and protein contents accompanied by increased levels of defense-related phytochemicals (total phenols, peroxidase, and polyphenol oxidase). Caraway was superior, but the results endorse the use of both essential oils for the preservation of JA tubers at room temperature, as an economic and eco-safe storage technique against the new blue mold.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA