Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38883716

RESUMO

Serum total immunoglobulin E levels (total IgE) capture the state of the immune system in relation to allergic sensitization. High levels are associated with airway obstruction and poor clinical outcomes in pediatric asthma. Inconsistent patient response to anti-IgE therapies motivates discovery of molecular mechanisms underlying serum IgE level differences in children with asthma. To uncover these mechanisms using complementary metabolomic and transcriptomic data, abundance levels of 529 named metabolites and expression levels of 22,772 genes were measured among children with asthma in the Childhood Asthma Management Program (CAMP, N=564) and the Genetic Epidemiology of Asthma in Costa Rica Study (GACRS, N=309) via the TOPMed initiative. Gene-metabolite associations dependent on IgE were identified within each cohort using multivariate linear models and were interpreted in a biochemical context using network topology, pathway and chemical enrichment, and representation within reactions. A total of 1,617 total IgE-dependent gene-metabolite associations from GACRS and 29,885 from CAMP met significance cutoffs. Of these, glycine and guanidinoacetic acid (GAA) were associated with the most genes in both cohorts, and the associations represented reactions central to glycine, serine, and threonine metabolism and arginine and proline metabolism. Pathway and chemical enrichment analysis further highlighted additional related pathways of interest. The results of this study suggest that GAA may modulate total IgE levels in two independent pediatric asthma cohorts with different characteristics, supporting the use of L-Arginine as a potential therapeutic for asthma exacerbation. Other potentially new targetable pathways are also uncovered.

2.
Bioinform Adv ; 3(1): vbad009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36922980

RESUMO

Motivation: IntLIM uncovers phenotype-dependent linear associations between two types of analytes (e.g. genes and metabolites) in a multi-omic dataset, which may reflect chemically or biologically relevant relationships. Results: The new IntLIM R package includes newly added support for generalized data types, covariate correction, continuous phenotypic measurements, model validation and unit testing. IntLIM analysis uncovered biologically relevant gene-metabolite associations in two separate datasets, and the run time is improved over baseline R functions by multiple orders of magnitude. Availability and implementation: IntLIM is available as an R package with a detailed vignette (https://github.com/ncats/IntLIM) and as an R Shiny app (see Supplementary Figs S1-S6) (https://intlim.ncats.io/). Supplementary information: Supplementary data are available at Bioinformatics Advances online.

3.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36373969

RESUMO

MOTIVATION: Functional interpretation of high-throughput metabolomic and transcriptomic results is a crucial step in generating insight from experimental data. However, pathway and functional information for genes and metabolites are distributed among many siloed resources, limiting the scope of analyses that rely on a single knowledge source. RESULTS: RaMP-DB 2.0 is a web interface, relational database, API and R package designed for straightforward and comprehensive functional interpretation of metabolomic and multi-omic data. RaMP-DB 2.0 has been upgraded with an expanded breadth and depth of functional and chemical annotations (ClassyFire, LIPID MAPS, SMILES, InChIs, etc.), with new data types related to metabolites and lipids incorporated. To streamline entity resolution across multiple source databases, we have implemented a new semi-automated process, thereby lessening the burden of harmonization and supporting more frequent updates. The associated RaMP-DB 2.0 R package now supports queries on pathways, common reactions (e.g. metabolite-enzyme relationship), chemical functional ontologies, chemical classes and chemical structures, as well as enrichment analyses on pathways (multi-omic) and chemical classes. Lastly, the RaMP-DB web interface has been completely redesigned using the Angular framework. AVAILABILITY AND IMPLEMENTATION: The code used to build all components of RaMP-DB 2.0 are freely available on GitHub at https://github.com/ncats/ramp-db, https://github.com/ncats/RaMP-Client/ and https://github.com/ncats/RaMP-Backend. The RaMP-DB web application can be accessed at https://rampdb.nih.gov/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metabolômica , Software , Bases de Dados Factuais , Perfilação da Expressão Gênica , Bases de Conhecimento , Proteínas
4.
BMC Bioinformatics ; 22(1): 35, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33516170

RESUMO

BACKGROUND: Assigning chromatin states genome-wide (e.g. promoters, enhancers, etc.) is commonly performed to improve functional interpretation of these states. However, computational methods to assign chromatin state suffer from the following drawbacks: they typically require data from multiple assays, which may not be practically feasible to obtain, and they depend on peak calling algorithms, which require careful parameterization and often exclude the majority of the genome. To address these drawbacks, we propose a novel learning technique built upon the Self-Organizing Map (SOM), Self-Organizing Map with Variable Neighborhoods (SOM-VN), to learn a set of representative shapes from a single, genome-wide, chromatin accessibility dataset to associate with a chromatin state assignment in which a particular RE is prevalent. These shapes can then be used to assign chromatin state using our workflow. RESULTS: We validate the performance of the SOM-VN workflow on 14 different samples of varying quality, namely one assay each of A549 and GM12878 cell lines and two each of H1 and HeLa cell lines, primary B-cells, and brain, heart, and stomach tissue. We show that SOM-VN learns shapes that are (1) non-random, (2) associated with known chromatin states, (3) generalizable across sets of chromosomes, and (4) associated with magnitude and multimodality. We compare the accuracy of SOM-VN chromatin states against the Clustering Aggregation Tool (CAGT), an unsupervised method that learns chromatin accessibility signal shapes but does not associate these shapes with REs, and we show that overall precision and recall is increased when learning shapes using SOM-VN as compared to CAGT. We further compare enhancer state assignments from SOM-VN in signals above a set threshold to enhancer state assignments from Predicting Enhancers from ATAC-seq Data (PEAS), a deep learning method that assigns enhancer chromatin states to peaks. We show that the precision-recall area under the curve for the assignment of enhancer states is comparable to PEAS. CONCLUSIONS: Our work shows that the SOM-VN workflow can learn relationships between REs and chromatin accessibility signal shape, which is an important step toward the goal of assigning and comparing enhancer state across multiple experiments and phenotypic states.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Adulto , Algoritmos , Pré-Escolar , Cromatina/genética , Células HeLa , Humanos , Adulto Jovem
5.
bioRxiv ; 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32511420

RESUMO

The National Center for Advancing Translational Sciences (NCATS) has developed an online open science data portal for its COVID-19 drug repurposing campaign - named OpenData - with the goal of making data across a range of SARS-CoV-2 related assays available in real-time. The assays developed cover a wide spectrum of the SARS-CoV-2 life cycle, including both viral and human (host) targets. In total, over 10,000 compounds are being tested in full concentration-response ranges from across multiple annotated small molecule libraries, including approved drug, repurposing candidates and experimental therapeutics designed to modulate a wide range of cellular targets. The goal is to support research scientists, clinical investigators and public health officials through open data sharing and analysis tools to expedite the development of SARS-CoV-2 interventions, and to prioritize promising compounds and repurposed drugs for further development in treating COVID-19.

6.
Metabolites ; 10(5)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429287

RESUMO

As researchers are increasingly able to collect data on a large scale from multiple clinical and omics modalities, multi-omics integration is becoming a critical component of metabolomics research. This introduces a need for increased understanding by the metabolomics researcher of computational and statistical analysis methods relevant to multi-omics studies. In this review, we discuss common types of analyses performed in multi-omics studies and the computational and statistical methods that can be used for each type of analysis. We pinpoint the caveats and considerations for analysis methods, including required parameters, sample size and data distribution requirements, sources of a priori knowledge, and techniques for the evaluation of model accuracy. Finally, for the types of analyses discussed, we provide examples of the applications of corresponding methods to clinical and basic research. We intend that our review may be used as a guide for metabolomics researchers to choose effective techniques for multi-omics analyses relevant to their field of study.

7.
BMC Bioinformatics ; 20(Suppl 24): 669, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861998

RESUMO

BACKGROUND: Proteomic measurements, which closely reflect phenotypes, provide insights into gene expression regulations and mechanisms underlying altered phenotypes. Further, integration of data on proteome and transcriptome levels can validate gene signatures associated with a phenotype. However, proteomic data is not as abundant as genomic data, and it is thus beneficial to use genomic features to predict protein abundances when matching proteomic samples or measurements within samples are lacking. RESULTS: We evaluate and compare four data-driven models for prediction of proteomic data from mRNA measured in breast and ovarian cancers using the 2017 DREAM Proteogenomics Challenge data. Our results show that Bayesian network, random forests, LASSO, and fuzzy logic approaches can predict protein abundance levels with median ground truth-predicted correlation values between 0.2 and 0.5. However, the most accurately predicted proteins differ considerably between approaches. CONCLUSIONS: In addition to benchmarking aforementioned machine learning approaches for predicting protein levels from transcript levels, we discuss challenges and potential solutions in state-of-the-art proteogenomic analyses.


Assuntos
Proteogenômica , Teorema de Bayes , Regulação da Expressão Gênica , Humanos , Proteoma/análise , RNA Mensageiro/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA