Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 22(22): 5527-5538, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27780853

RESUMO

PURPOSE: Non-small cell lung cancers (NSCLCs) harboring ALK gene rearrangements (ALK+) typically become resistant to the first-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) crizotinib through development of secondary resistance mutations in ALK or disease progression in the brain. Mutations that confer resistance to second-generation ALK TKIs ceritinib and alectinib have also been identified. Here, we report the structure and first comprehensive preclinical evaluation of the next-generation ALK TKI brigatinib. EXPERIMENTAL DESIGN: A kinase screen was performed to evaluate the selectivity profile of brigatinib. The cellular and in vivo activities of ALK TKIs were compared using engineered and cancer-derived cell lines. The brigatinib-ALK co-structure was determined. RESULTS: Brigatinib potently inhibits ALK and ROS1, with a high degree of selectivity over more than 250 kinases. Across a panel of ALK+ cell lines, brigatinib inhibited native ALK (IC50, 10 nmol/L) with 12-fold greater potency than crizotinib. Superior efficacy of brigatinib was also observed in mice with ALK+ tumors implanted subcutaneously or intracranially. Brigatinib maintained substantial activity against all 17 secondary ALK mutants tested in cellular assays and exhibited a superior inhibitory profile compared with crizotinib, ceritinib, and alectinib at clinically achievable concentrations. Brigatinib was the only TKI to maintain substantial activity against the most recalcitrant ALK resistance mutation, G1202R. The unique, potent, and pan-ALK mutant activity of brigatinib could be rationalized by structural analyses. CONCLUSIONS: Brigatinib is a highly potent and selective ALK inhibitor. These findings provide the molecular basis for the promising activity being observed in ALK+, crizotinib-resistant patients with NSCLC being treated with brigatinib in clinical trials. Clin Cancer Res; 22(22); 5527-38. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Compostos Organofosforados/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Quinase do Linfoma Anaplásico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Crizotinibe , Células Hep G2 , Humanos , Neoplasias Pulmonares/metabolismo , Mutação/efeitos dos fármacos , Pirazóis/farmacologia , Piridinas/farmacologia , Sulfonas/farmacologia , Células U937
2.
PLoS Genet ; 9(4): e1003413, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23593019

RESUMO

Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic ß-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag⁻/⁻ mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.


Assuntos
Antineoplásicos Alquilantes , DNA Glicosilases , Neoplasias/tratamento farmacológico , Poli(ADP-Ribose) Polimerases , Alquilação/efeitos dos fármacos , Alquilação/genética , Animais , Antineoplásicos Alquilantes/efeitos adversos , Antineoplásicos Alquilantes/uso terapêutico , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Camundongos Transgênicos/genética , Camundongos Transgênicos/lesões , Neoplasias/genética , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Timócitos/citologia , Timócitos/efeitos dos fármacos
3.
J Clin Invest ; 122(7): 2680-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22684101

RESUMO

More than 15% of cancer deaths worldwide are associated with underlying infections or inflammatory conditions, therefore understanding how inflammation contributes to cancer etiology is important for both cancer prevention and treatment. Inflamed tissues are known to harbor elevated etheno-base (ε-base) DNA lesions induced by the lipid peroxidation that is stimulated by reactive oxygen and nitrogen species (RONS) released from activated neutrophils and macrophages. Inflammation contributes to carcinogenesis in part via RONS-induced cytotoxic and mutagenic DNA lesions, including ε-base lesions. The mouse alkyl adenine DNA glycosylase (AAG, also known as MPG) recognizes such base lesions, thus protecting against inflammation-associated colon cancer. Two other DNA repair enzymes are known to repair ε-base lesions, namely ALKBH2 and ALKBH3; thus, we sought to determine whether these DNA dioxygenase enzymes could protect against chronic inflammation-mediated colon carcinogenesis. Using established chemically induced colitis and colon cancer models in mice, we show here that ALKBH2 and ALKBH3 provide cancer protection similar to that of the DNA glycosylase AAG. Moreover, Alkbh2 and Alkbh3 each display apparent epistasis with Aag. Surprisingly, deficiency in all 3 DNA repair enzymes confers a massively synergistic phenotype, such that animals lacking all 3 DNA repair enzymes cannot survive even a single bout of chemically induced colitis.


Assuntos
Colite/genética , DNA Glicosilases/genética , Enzimas Reparadoras do DNA/genética , Reparo do DNA , Dioxigenases/genética , Pancreatite/genética , Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato , Animais , Azoximetano/farmacologia , Carcinógenos/farmacologia , Colite/induzido quimicamente , Colite/metabolismo , Colo/imunologia , Colo/patologia , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , DNA Glicosilases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Sulfato de Dextrana/farmacologia , Dioxigenases/metabolismo , Epistasia Genética , Feminino , Predisposição Genética para Doença , Estimativa de Kaplan-Meier , Dose Letal Mediana , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas/imunologia , Pâncreas/patologia , Pancreatite/induzido quimicamente , Pancreatite/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA