Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Mol Metab ; 79: 101869, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38160938

RESUMO

OBJECTIVE: Lysosomal acid lipase (LAL) is the only enzyme known to hydrolyze cholesteryl esters (CE) and triacylglycerols in lysosomes at an acidic pH. Despite the importance of lysosomal hydrolysis in skeletal muscle (SM), research in this area is limited. We hypothesized that LAL may play an important role in SM development, function, and metabolism as a result of lipid and/or carbohydrate metabolism disruptions. RESULTS: Mice with systemic LAL deficiency (Lal-/-) had markedly lower SM mass, cross-sectional area, and Feret diameter despite unchanged proteolysis or protein synthesis markers in all SM examined. In addition, Lal-/- SM showed increased total cholesterol and CE concentrations, especially during fasting and maturation. Regardless of increased glucose uptake, expression of the slow oxidative fiber marker MYH7 was markedly increased in Lal-/-SM, indicating a fiber switch from glycolytic, fast-twitch fibers to oxidative, slow-twitch fibers. Proteomic analysis of the oxidative and glycolytic parts of the SM confirmed the transition between fast- and slow-twitch fibers, consistent with the decreased Lal-/- muscle size due to the "fiber paradox". Decreased oxidative capacity and ATP concentration were associated with reduced mitochondrial function of Lal-/- SM, particularly affecting oxidative phosphorylation, despite unchanged structure and number of mitochondria. Impairment in muscle function was reflected by increased exhaustion in the treadmill peak effort test in vivo. CONCLUSION: We conclude that whole-body loss of LAL is associated with a profound remodeling of the muscular phenotype, manifested by fiber type switch and a decline in muscle mass, most likely due to dysfunctional mitochondria and impaired energy metabolism, at least in mice.


Assuntos
Doenças Mitocondriais , Doença de Wolman , Animais , Camundongos , Músculo Esquelético/metabolismo , Proteômica , Esterol Esterase/metabolismo , Doença de Wolman/genética
2.
Mol Metab ; 76: 101791, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37586657

RESUMO

OBJECTIVES: Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids and precursors of oxygenated lipid mediators with diverse functions, including the control of cell growth, inflammation and tumourigenesis. However, the molecular pathways that control the availability of PUFAs for lipid mediator production are not well understood. Here, we investigated the crosstalk of three pathways in the provision of PUFAs for lipid mediator production: (i) secreted group X phospholipase A2 (GX sPLA2) and (ii) cytosolic group IVA PLA2 (cPLA2α), both mobilizing PUFAs from membrane phospholipids, and (iii) adipose triglyceride lipase (ATGL), which mediates the degradation of triacylglycerols (TAGs) stored in cytosolic lipid droplets (LDs). METHODS: We combined lipidomic and functional analyses in cancer cell line models to dissect the trafficking of PUFAs between membrane phospholipids and LDs and determine the role of these pathways in lipid mediator production, cancer cell proliferation and tumour growth in vivo. RESULTS: We demonstrate that lipid mediator production strongly depends on TAG turnover. GX sPLA2 directs ω-3 and ω-6 PUFAs from membrane phospholipids into TAG stores, whereas ATGL is required for their entry into lipid mediator biosynthetic pathways. ATGL controls the release of PUFAs from LD stores and their conversion into cyclooxygenase- and lipoxygenase-derived lipid mediators under conditions of nutrient sufficiency and during serum starvation. In starving cells, ATGL also promotes the incorporation of LD-derived PUFAs into phospholipids, representing substrates for cPLA2α. Furthermore, we demonstrate that the built-up of TAG stores by acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is required for the production of mitogenic lipid signals that promote cancer cell proliferation and tumour growth. CONCLUSION: This study shifts the paradigm of PLA2-driven lipid mediator signalling and identifies LDs as central lipid mediator production hubs. Targeting DGAT1-mediated LD biogenesis is a promising strategy to restrict lipid mediator production and tumour growth.


Assuntos
Gotículas Lipídicas , Neoplasias , Humanos , Gotículas Lipídicas/metabolismo , Fosfolipases A2 do Grupo X/metabolismo , Lipase/metabolismo , Ácidos Graxos Insaturados/metabolismo , Fosfolipídeos/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Neoplasias/metabolismo , Proliferação de Células
3.
Mol Metab ; 71: 101705, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907508

RESUMO

OBJECTIVE: In brown adipose tissue (iBAT), the balance between lipid/glucose uptake and lipolysis is tightly regulated by insulin signaling. Downstream of the insulin receptor, PDK1 and mTORC2 phosphorylate AKT, which activates glucose uptake and lysosomal mTORC1 signaling. The latter requires the late endosomal/lysosomal adaptor and MAPK and mTOR activator (LAMTOR/Ragulator) complex, which serves to translate the nutrient status of the cell to the respective kinase. However, the role of LAMTOR in metabolically active iBAT has been elusive. METHODS: Using an AdipoqCRE-transgenic mouse line, we deleted LAMTOR2 (and thereby the entire LAMTOR complex) in adipose tissue (LT2 AKO). To examine the metabolic consequences, we performed metabolic and biochemical studies in iBAT isolated from mice housed at different temperatures (30 °C, room temperature and 5 °C), after insulin treatment, or in fasted and refed condition. For mechanistic studies, mouse embryonic fibroblasts (MEFs) lacking LAMTOR 2 were analyzed. RESULTS: Deletion of the LAMTOR complex in mouse adipocytes resulted in insulin-independent AKT hyperphosphorylation in iBAT, causing increased glucose and fatty acid uptake, which led to massively enlarged lipid droplets. As LAMTOR2 was essential for the upregulation of de novo lipogenesis, LAMTOR2 deficiency triggered exogenous glucose storage as glycogen in iBAT. These effects are cell autonomous, since AKT hyperphosphorylation was abrogated by PI3K inhibition or by deletion of the mTORC2 component Rictor in LAMTOR2-deficient MEFs. CONCLUSIONS: We identified a homeostatic circuit for the maintenance of iBAT metabolism that links the LAMTOR-mTORC1 pathway to PI3K-mTORC2-AKT signaling downstream of the insulin receptor.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Receptor de Insulina , Camundongos , Animais , Receptor de Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tecido Adiposo Marrom/metabolismo , Fibroblastos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Insulina/metabolismo , Camundongos Transgênicos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nutrientes , Homeostase , Glucose/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas/metabolismo
4.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834530

RESUMO

Monoglyceride lipase (MGL) hydrolyzes monoacylglycerols (MG) to glycerol and one fatty acid. Among the various MG species, MGL also degrades 2-arachidonoylglycerol, the most abundant endocannabinoid and potent activator of the cannabinoid receptors 1 and 2. We investigated the consequences of MGL deficiency on platelet function using systemic (Mgl-/-) and platelet-specific Mgl-deficient (platMgl-/-) mice. Despite comparable platelet morphology, loss of MGL was associated with decreased platelet aggregation and reduced response to collagen activation. This was reflected by reduced thrombus formation in vitro, accompanied by a longer bleeding time and a higher blood volume loss. Occlusion time after FeCl3-induced injury was markedly reduced in Mgl-/- mice, which is consistent with contraction of large aggregates and fewer small aggregates in vitro. The absence of any functional changes in platelets from platMgl-/- mice is in accordance with lipid degradation products or other molecules in the circulation, rather than platelet-specific effects, being responsible for the observed alterations in Mgl-/- mice. We conclude that genetic deletion of MGL is associated with altered thrombogenesis.


Assuntos
Monoacilglicerol Lipases , Monoglicerídeos , Animais , Camundongos , Endocanabinoides/metabolismo , Lipólise , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoacilglicerol Lipases/genética
5.
J Lipid Res ; 64(1): 100305, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36273647

RESUMO

Hormone-sensitive lipase (HSL) plays a crucial role in intracellular lipolysis, and loss of HSL leads to diacylglycerol (DAG) accumulation, reduced FA mobilization, and impaired PPARγ signaling. Hsl knockout mice exhibit adipose tissue inflammation, but the underlying mechanisms are still not clear. Here, we investigated if and to what extent HSL loss contributes to endoplasmic reticulum (ER) stress and adipose tissue inflammation in Hsl knockout mice. Furthermore, we were interested in how impaired PPARγ signaling affects the development of inflammation in epididymal white adipose tissue (eWAT) and inguinal white adipose tissue (iWAT) of Hsl knockout mice and if DAG and ceramide accumulation contribute to adipose tissue inflammation and ER stress. Ultrastructural analysis showed a markedly dilated ER in both eWAT and iWAT upon loss of HSL. In addition, Hsl knockout mice exhibited macrophage infiltration and increased F4/80 mRNA expression, a marker of macrophage activation, in eWAT, but not in iWAT. We show that treatment with rosiglitazone, a PPARγ agonist, attenuated macrophage infiltration and ameliorated inflammation of eWAT, but expression of ER stress markers remained unchanged, as did DAG and ceramide levels in eWAT. Taken together, we show that HSL loss promoted ER stress in both eWAT and iWAT of Hsl knockout mice, but inflammation and macrophage infiltration occurred mainly in eWAT. Also, PPARγ activation reversed inflammation but not ER stress and DAG accumulation. These data indicate that neither reduction of DAG levels nor ER stress contribute to the reversal of eWAT inflammation in Hsl knockout mice.


Assuntos
PPAR gama , Esterol Esterase , Camundongos , Animais , Rosiglitazona/farmacologia , Esterol Esterase/genética , Esterol Esterase/metabolismo , Camundongos Knockout , PPAR gama/genética , PPAR gama/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Lipólise/fisiologia , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo
6.
JCI Insight ; 7(9)2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35349484

RESUMO

The lung airways are constantly exposed to inhaled toxic substances, resulting in cellular damage that is repaired by local expansion of resident bronchiolar epithelial club cells. Disturbed bronchiolar epithelial damage repair lies at the core of many prevalent lung diseases, including chronic obstructive pulmonary disease, asthma, pulmonary fibrosis, and lung cancer. However, it is still not known how bronchiolar club cell energy metabolism contributes to this process. Here, we show that adipose triglyceride lipase (ATGL), the rate-limiting enzyme for intracellular lipolysis, is critical for normal club cell function in mice. Deletion of the gene encoding ATGL, Pnpla2 (also known as Atgl), induced substantial triglyceride accumulation, decreased mitochondrial numbers, and decreased mitochondrial respiration in club cells. This defect manifested as bronchiolar epithelial thickening and increased airway resistance under baseline conditions. After naphthalene­induced epithelial denudation, a regenerative defect was apparent. Mechanistically, dysfunctional PPARα lipid-signaling underlies this phenotype because (a) ATGL was needed for PPARα lipid-signaling in regenerating bronchioles and (b) administration of the specific PPARα agonist WY14643 restored normal bronchiolar club cell ultrastructure and regenerative potential. Our data emphasize the importance of the cellular energy metabolism for lung epithelial regeneration and highlight the significance of ATGL-mediated lipid catabolism for lung health.


Assuntos
Lipólise , PPAR alfa , Animais , Bronquíolos , Lipase/genética , Lipase/metabolismo , Lipólise/fisiologia , Camundongos , PPAR alfa/metabolismo , Regeneração , Triglicerídeos/metabolismo
7.
Cells ; 11(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269472

RESUMO

According to genome-wide RNA sequencing data from human and mouse platelets, adipose triglyceride lipase (ATGL), the main lipase catalyzing triglyceride (TG) hydrolysis in cytosolic lipid droplets (LD) at neutral pH, is expressed in platelets. Currently, it is elusive to whether common lipolytic enzymes are involved in the degradation of TG in platelets. Since the consequences of ATGL deficiency in platelets are unknown, we used whole-body and platelet-specific (plat)Atgl-deficient (-/-) mice to investigate the loss of ATGL on platelet function. Our results showed that platelets accumulate only a few LD due to lack of ATGL. Stimulation with platelet-activating agonists resulted in comparable platelet activation in Atgl-/-, platAtgl-/-, and wild-type mice. Measurement of mitochondrial respiration revealed a decreased oxygen consumption rate in platelets from Atgl-/- but not from platAtgl-/- mice. Of note, global loss of ATGL was associated with an anti-thrombogenic phenotype, which was evident by reduced thrombus formation in collagen-coated channels in vitro despite unchanged bleeding and occlusion times in vivo. We conclude that genetic deletion of ATGL affects collagen-induced thrombosis without pathological bleeding and platelet activation.


Assuntos
Aciltransferases/metabolismo , Lipase , Trombose , Animais , Lipase/metabolismo , Camundongos , Camundongos Knockout , Ativação Plaquetária , Triglicerídeos/metabolismo
8.
Food Chem ; 371: 131194, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34600364

RESUMO

Styrian pumpkin seed oil is a conditioned green-colored oil renowned for nutty smell and taste. Due to α-linolenic acid (ALA) contents below 1% of total fatty acids and the prospect of nutritional health claims based on its potential oxidation products, we investigated the fate of ALA and product oxylipins in the course of down-stream processing of seeds and in oils. Lipidomic analyses with Lipid Data Analyzer 2.8.1 revealed: Processing did not change (1) main fatty acid composition in the oils, (2) amounts of triacylglycerol species, (3) structures of triacylglycerol molecular species containing ALA. (4) Minor precursor ALA in fresh Styrian and normal pumpkins produced 6 product phytoprostanes in either cultivar, quantitatively more in the latter. (5) In oil samples 7 phytoprostanes and 2 phytofurans were detected. The latter two are specific for their presence in pumpkin seed oils, of note, quantitatively more in conditioned oils than in cold-pressed native oils.


Assuntos
Cucurbita , Ácidos Graxos , Lipidômica , Estrutura Molecular , Oxilipinas , Óleos de Plantas , Sementes , Triglicerídeos , Ácido alfa-Linolênico
9.
Nat Aging ; 2(12): 1159-1175, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-37118545

RESUMO

Age-related muscle dysfunction and sarcopenia are major causes of physical incapacitation in older adults and currently lack viable treatment strategies. Here we find that sphingolipids accumulate in mouse skeletal muscle upon aging and that both genetic and pharmacological inhibition of sphingolipid synthesis prevent age-related decline in muscle mass while enhancing strength and exercise capacity. Inhibition of sphingolipid synthesis confers increased myogenic potential and promotes protein synthesis. Within the sphingolipid pathway, we show that accumulation of dihydroceramides is the culprit disturbing myofibrillar homeostasis. The relevance of sphingolipid pathways in human aging is demonstrated in two cohorts, the UK Biobank and Helsinki Birth Cohort Study in which gene expression-reducing variants of SPTLC1 and DEGS1 are associated with improved and reduced fitness of older individuals, respectively. These findings identify sphingolipid synthesis inhibition as an attractive therapeutic strategy for age-related sarcopenia and co-occurring pathologies.


Assuntos
Sarcopenia , Animais , Camundongos , Humanos , Idoso , Sarcopenia/prevenção & controle , Músculo Esquelético/metabolismo , Esfingolipídeos/metabolismo , Estudos de Coortes , Envelhecimento/genética
10.
JID Innov ; 1(3): 100033, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34909730

RESUMO

Alterations of the lipid profile of the stratum corneum have an important role in the pathogenesis of atopic dermatitis (AD) because they contribute to epidermal barrier impairment. However, they have not previously been envisioned as a cellular response to altered metabolic requirements in AD epidermis. In this study, we report that the lipid composition in the epidermis of flaky tail, that is, ft/ft mice mimics that of human lesional AD (ADL) epidermis, both showing a shift toward shorter lipid species. The amounts of C24 and C26 free fatty acids and C24 and C26 ceramides-oxidized exclusively in peroxisomes-were reduced in the epidermis of ft/ft mice despite increased lipid synthesis, similar to that seen in human ADL edpidermis. Increased ACOX1 protein and activity in granular keratinocytes of ft/ft epidermis, altered lipid profile in human epidermal equivalents overexpressing ACOX1, and increased ACOX1 immunostaining in skin biopsies from patients with ADL suggest that peroxisomal ß-oxidation significantly contributes to lipid signature in ADL epidermis. Moreover, we show that increased anaerobic glycolysis in ft/ft mouse epidermis is essential for keratinocyte proliferation and adenosine triphosphate synthesis but does not contribute to local inflammation. Thus, this work evidenced a metabolic shift toward enhanced peroxisomal ß-oxidation and anaerobic glycolysis in ADL epidermis.

11.
Int J Mol Sci ; 22(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34639107

RESUMO

Vemurafenib (PLX4032), small-molecule inhibitor of mutated BRAFV600E protein, has emerged as a potent anti-cancer agent against metastatic melanoma harboring BRAFV600E mutation. Unfortunately, the effect of PLX4032 in the treatment of metastatic BRAF mutated colorectal cancer (CRC) is less potent due to high incidence of fast-developing chemoresistance. It has been demonstrated that sphingolipids are important mediators of chemoresistance to various therapies in colon cancer. In this study, we will explore the role of major regulators of sphingolipid metabolism and signaling in the development of resistance to vemurafenib in BRAF mutant colon cancer cells. The obtained data revealed significantly increased expression levels of activated sphingosine kinases (SphK1 and SphK2) in resistant cells concomitant with increased abundance of sphingosine-1-phosphate (S1P) and its precursor sphingosine, which was accompanied by increased expression levels of the enzymes regulating the ceramide salvage pathway, namely ceramide synthases 2 and 6 and acid ceramidase, especially after the exposure to vemurafenib. Pharmacological inhibition of SphK1/SphK2 activities or modulation of ceramide metabolism by exogenous C6-ceramide enhanced the anti-proliferative effect of PLX4032 in resistant RKO cells in a synergistic manner. It is important to note that the inhibition of SphK2 by ABC294640 proved effective at restoring the sensitivity of resistant cells to vemurafenib at the largest number of combinations of sub-toxic drug concentrations with minimal cytotoxicity. Furthermore, the obtained findings revealed that enhanced anti-proliferative, anti-migratory, anti-clonogenic and pro-apoptotic effects of a combination treatment with ABC294640 and PLX4032 relative to either drug alone were accompanied by the inhibition of S1P-regulated AKT activity and concomitant abrogation of AKT-mediated cellular levels of nucleophosmin and translationally-controlled tumour protein. Collectively, our study suggests the possibility of using the combination of ABC294640 and PLX4032 as a novel therapeutic approach to combat vemurafenib resistance in BRAF mutant colon cancer, which warrants additional preclinical validation studies.


Assuntos
Adamantano/análogos & derivados , Biomarcadores Tumorais/antagonistas & inibidores , Neoplasias do Colo/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Nucleares/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Piridinas/farmacologia , Vemurafenib/farmacologia , Adamantano/farmacologia , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Proto-Oncogênicas c-akt , Células Tumorais Cultivadas , Proteína Tumoral 1 Controlada por Tradução
13.
Artigo em Inglês | MEDLINE | ID: mdl-33862237

RESUMO

Psoriasis is a common chronic inflammatory skin disease linked to increased cardiovascular risk. Functional impairment of high-density lipoprotein (HDL) may contribute to excessive cardiovascular mortality in psoriasis patients. Anti-cytokine therapies with biologics have been efficiently used for the management of psoriasis, however little data is available on the effects of biologic anti-psoriatic therapies on the composition and functionality of HDL. Blood samples were taken from 17 healthy volunteers and from 27 real-world psoriasis patients at baseline (no therapy with biologics) and after short-term (3 to 6 months) and intermediate-term (1 to 2 years) therapy. The biologics used included anti-interleukin (IL)-12/23p40 (ustekinumab), anti-IL17A (secukinumab) or anti-tumor necrosis factor-α (etanercept or adalimumab) antibodies. We observed that in psoriasis patients at baseline, metrics of HDL function including cholesterol efflux capacity of apolipoprotein B-depleted serum (p = 0.021), paraoxonase (p < 0.001) and lecithin-cholesterol acyltransferase (p < 0.001) activities were impaired, when compared to controls. Unexpectedly, we observed that short- and especially intermediate-term therapy with biologics markedly reduced HDL cholesterol efflux capacity (p < 0.001) and rendered HDL pro-inflammatory (p < 0.001), but increased paraoxonase (p = 0.009) and lecithin-cholesterol acyltransferase (p = 0.019) activities. All biologics caused similar changes in HDL composition, subclass distribution and cholesterol efflux capacity. Our results provide evidence that anti-psoriatic therapy with biologic agents is associated with changes in HDL functionality, particle composition and subclass distribution.


Assuntos
Lipoproteínas HDL/metabolismo , Psoríase/tratamento farmacológico , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
14.
Commun Biol ; 4(1): 323, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692445

RESUMO

Modulation of adipocyte lipolysis represents an attractive approach to treat metabolic diseases. Lipolysis mainly depends on two enzymes: adipose triglyceride lipase and hormone-sensitive lipase (HSL). Here, we investigated the short- and long-term impact of adipocyte HSL on energy homeostasis using adipocyte-specific HSL knockout (AHKO) mice. AHKO mice fed high-fat-diet (HFD) progressively developed lipodystrophy accompanied by excessive hepatic lipid accumulation. The increased hepatic triglyceride deposition was due to induced de novo lipogenesis driven by increased fatty acid release from adipose tissue during refeeding related to defective insulin signaling in adipose tissue. Remarkably, the fatty liver of HFD-fed AHKO mice reversed with advanced age. The reversal of fatty liver coincided with a pronounced lipodystrophic phenotype leading to blunted lipolytic activity in adipose tissue. Overall, we demonstrate that impaired adipocyte HSL-mediated lipolysis affects systemic energy homeostasis in AHKO mice, whereby with older age, these mice reverse their fatty liver despite advanced lipodystrophy.


Assuntos
Adipócitos/enzimologia , Metabolismo Energético , Fígado Gorduroso/enzimologia , Lipodistrofia/enzimologia , Lipólise , Fígado/metabolismo , Esterol Esterase/deficiência , Adipócitos/patologia , Fatores Etários , Animais , Glicemia/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Insulina/metabolismo , Lipodistrofia/genética , Lipodistrofia/patologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama/metabolismo , Esterol Esterase/genética , Fatores de Tempo
15.
Mol Metab ; 47: 101174, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33549847

RESUMO

OBJECTIVE: The goal of this study was to investigate the importance of central hormone-sensitive lipase (HSL) expression in the regulation of food intake and body weight in mice to clarify whether intracellular lipolysis in the mammalian hypothalamus plays a role in regulating appetite. METHODS: Using pharmacological and genetic approaches, we investigated the role of HSL in the rodent brain in the regulation of feeding and energy homeostasis under basal conditions during acute stress and high-fat diet feeding. RESULTS: We found that HSL, a key enzyme in the catabolism of cellular lipid stores, is expressed in the appetite-regulating centers in the hypothalamus and is activated by acute stress through a mechanism similar to that observed in adipose tissue and skeletal muscle. Inhibition of HSL in rodent models by a synthetic ligand, global knockout, or brain-specific deletion of HSL prevents a decrease in food intake normally seen in response to acute stress and is associated with the increased expression of orexigenic peptides neuropeptide Y (NPY) and agouti-related peptide (AgRP). Increased food intake can be reversed by adeno-associated virus-mediated reintroduction of HSL in neurons of the mediobasal hypothalamus. Importantly, metabolic stress induced by a high-fat diet also enhances the hyperphagic phenotype of HSL-deficient mice. Specific deletion of HSL in the ventromedial hypothalamic nucleus (VMH) or AgRP neurons reveals that HSL in the VMH plays a role in both acute stress-induced food intake and high-fat diet-induced obesity. CONCLUSIONS: Our results indicate that HSL activity in the mediobasal hypothalamus is involved in the acute reduction in food intake during the acute stress response and sensing of a high-fat diet.


Assuntos
Apetite/fisiologia , Homeostase , Hipotálamo/metabolismo , Esterol Esterase/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Ingestão de Alimentos , Metabolismo Energético , Feminino , Hiperfagia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Obesidade/metabolismo , Fatores de Processamento de RNA , Esterol Esterase/genética , Estresse Fisiológico/genética , Transcriptoma
16.
Life Sci Alliance ; 3(10)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32788226

RESUMO

Homologous apolipoproteins of MICOS complex, MIC26 and MIC27, show an antagonistic regulation of their protein levels, making it difficult to deduce their individual functions using a single gene deletion. We obtained single and double knockout (DKO) human cells of MIC26 and MIC27 and found that DKO show more concentric onion-like cristae with loss of CJs than any single deletion indicating overlapping roles in formation of CJs. Using a combination of complexome profiling, STED nanoscopy, and blue-native gel electrophoresis, we found that MIC26 and MIC27 are dispensable for the stability and integration of the remaining MICOS subunits into the complex suggesting that they assemble late into the MICOS complex. MIC26 and MIC27 are cooperatively required for the integrity of respiratory chain (super) complexes (RCs/SC) and the F1Fo-ATP synthase complex and integration of F1 subunits into the monomeric F1Fo-ATP synthase. While cardiolipin was reduced in DKO cells, overexpression of cardiolipin synthase in DKO restores the stability of RCs/SC. Overall, we propose that MIC26 and MIC27 are cooperatively required for global integrity and stability of multimeric OXPHOS complexes by modulating cardiolipin levels.


Assuntos
Apolipoproteínas/metabolismo , Membranas Mitocondriais/metabolismo , Apolipoproteínas/genética , Cardiolipinas/metabolismo , Transporte de Elétrons/genética , Deleção de Genes , Humanos , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Ligação Proteica/genética , Subunidades Proteicas/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
17.
J Lipid Res ; 61(7): 995-1003, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32350080

RESUMO

Bis(monoacylglycero)phosphate (BMP), also known as lysobisphosphatidic acid, is a phospholipid that promotes lipid sorting in late endosomes/lysosomes by activating lipid hydrolases and lipid transfer proteins. Changes in the cellular BMP content therefore reflect an altered metabolic activity of the endolysosomal system. Surprisingly, little is known about the physiological regulation of BMP. In this study, we investigated the effects of nutritional and metabolic factors on BMP profiles of whole tissues and parenchymal and nonparenchymal cells. Tissue samples were obtained from fed, fasted, 2 h refed, and insulin-treated mice, as well as from mice housed at 5°C, 22°C, or 30°C. These tissues exhibited distinct BMP profiles that were regulated by the nutritional state in a tissue-specific manner. Insulin treatment was not sufficient to mimic refeeding-induced changes in tissue BMP levels, indicating that BMP metabolism is regulated by other hormonal or nutritional factors. Tissue fractionation experiments revealed that fasting drastically elevates BMP levels in hepatocytes and pancreatic cells. Furthermore, we observed that the BMP content in brown adipose tissue strongly depends on housing temperatures. In conclusion, our observations suggest that BMP concentrations adapt to the metabolic state in a tissue- and cell-type-specific manner in mice. Drastic changes observed in hepatocytes, pancreatic cells, and brown adipocytes suggest that BMP plays a role in the functional adaption to nutrient starvation and ambient temperature.


Assuntos
Lisofosfolipídeos/metabolismo , Lisossomos/metabolismo , Monoglicerídeos/metabolismo , Animais , Endossomos/metabolismo , Macrófagos/citologia , Camundongos
18.
EBioMedicine ; 53: 102696, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32143183

RESUMO

BACKGROUND: Tumor cells display metabolic changes that correlate with malignancy, including an elevated hydrolysis of monoacylglycerol (MAG) in various cancer types. However, evidence is absent for the relationship between MAG lipolysis and NSCLC. METHODS: MAG hydrolase activity assay, migration, invasion, proliferation, lipids quantification, and transactivation assays were performed in vitro. Tumor xenograft studies and lung metastasis assays were examined in vivo. The correlations of MAGL/ABHD6 expression in cancerous tissues with the clinicopathological characteristics and survival of NSCLC patients were validated. FINDINGS: ABHD6 functions as the primary MAG lipase and an oncogene in NSCLC. MAG hydrolase activities were more than 11-fold higher in cancerous lung tissues than in paired non-cancerous tissues derived from NSCLC patients. ABHD6, instead of MAGL, was significantly associated with advanced tumor node metastasis (TNM) stage (HR, 1.382; P = 0.004) and had a negative impact on the overall survival of NSCLC patients (P = 0.001). ABHD6 silencing reduced migration and invasion of NSCLC cells in vitro as well as metastatic seeding and tumor growth in vivo. Conversely, ectopic overexpression of ABHD6 provoked the pathogenic potential. ABHD6 blockade significantly induced intracellular MAG accumulation which activated PPARα/γ signaling and inhibited cancer pathophysiology. INTERPRETATION: The present study provide evidence for a previously uncovered pro-oncogenic function of ABHD6 in NSCLC, with the outlined metabolic mechanisms shedding light on new potential strategies for anticancer therapy. FUND: This work was supported by the Project for Major New Drug Innovation and Development (2015ZX09501010 and 2018ZX09711001-002-003).


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Lipólise , Neoplasias Pulmonares/metabolismo , Monoacilglicerol Lipases/metabolismo , Monoglicerídeos/metabolismo , Células A549 , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Pessoa de Meia-Idade , Monoacilglicerol Lipases/genética
19.
Int J Mol Sci ; 21(3)2020 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-32050431

RESUMO

During inflammation, activated leukocytes release cytotoxic mediators that compromise blood-brain barrier (BBB) function. Under inflammatory conditions, myeloperoxidase (MPO) is critically involved in inflicting BBB damage. We used genetic and pharmacological approaches to investigate whether MPO induces aberrant lipid homeostasis at the BBB in a murine endotoxemia model. To corroborate findings in a human system we studied the impact of sera from sepsis and non-sepsis patients on brain endothelial cells (hCMEC/D3). In response to endotoxin, the fatty acid, ceramide, and sphingomyelin content of isolated mouse brain capillaries dropped and barrier dysfunction occurred. In mice, genetic deficiency or pharmacological inhibition of MPO abolished these alterations. Studies in metabolic cages revealed increased physical activity and less pronounced sickness behavior of MPO-/- compared to wild-type mice in response to sepsis. In hCMEC/D3 cells, exogenous tumor necrosis factor α (TNFα) potently regulated gene expression of pro-inflammatory cytokines and a set of genes involved in sphingolipid (SL) homeostasis. Notably, treatment of hCMEC/D3 cells with sera from septic patients reduced cellular ceramide concentrations and induced barrier and mitochondrial dysfunction. In summary, our in vivo and in vitro data revealed that inflammatory mediators including MPO, TNFα induce dysfunctional SL homeostasis in brain endothelial cells. Genetic and pharmacological inhibition of MPO attenuated endotoxin-induced alterations in SL homeostasis in vivo, highlighting the potential role of MPO as drug target to treat inflammation-induced brain dysfunction.


Assuntos
Encéfalo/irrigação sanguínea , Células Endoteliais/metabolismo , Peroxidase/metabolismo , Sepse/metabolismo , Esfingolipídeos/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Capilares/metabolismo , Capilares/patologia , Linhagem Celular , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/patologia , Homeostase , Humanos , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Sepse/patologia
20.
Cardiovasc Res ; 116(2): 339-352, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31166588

RESUMO

AIMS: Lipotoxic cardiomyopathy in diabetic and obese patients typically encompasses increased cardiac fatty acid (FA) uptake eventually surpassing the mitochondrial oxidative capacity. Lowering FA utilization via inhibition of lipolysis represents a strategy to counteract the development of lipotoxic heart dysfunction. However, defective cardiac triacylglycerol (TAG) catabolism and FA oxidation in humans (and mice) carrying mutated ATGL alleles provokes lipotoxic heart dysfunction questioning a therapeutic approach to decrease cardiac lipolysis. Interestingly, decreased lipolysis via cardiac overexpression of Perilipin 5 (Plin5), a binding partner of ATGL, is compatible with normal heart function and lifespan despite massive cardiac lipid accumulation. Herein, we decipher mechanisms that protect Plin5 transgenic mice from the development of heart dysfunction. METHODS AND RESULTS: We generated mice with cardiac-specific overexpression of Plin5 encoding a serine-155 to alanine exchange (Plin5-S155A) of the protein kinase A phosphorylation site, which has been suggested as a prerequisite to stimulate lipolysis and may play a crucial role in the preservation of heart function. Plin5-S155A mice showed a substantial increase in cardiac TAG and ceramide levels, which was comparable to mice overexpressing non-mutated Plin5. Lipid accumulation was compatible with normal heart function even under mild stress. Plin5-S155A mice showed reduced cardiac FA oxidation but normal ATP production and changes in the Plin5-S155A phosphoproteome compared to Plin5 transgenic mice. Interestingly, mitochondrial recruitment of dynamin-related protein 1 (Drp1) was markedly reduced in cardiac muscle of Plin5-S155A and Plin5 transgenic mice accompanied by decreased phosphorylation of mitochondrial fission factor, a mitochondrial receptor of Drp1. CONCLUSIONS: This study suggests that low cardiac lipolysis is associated with reduced mitochondrial fission and may represent a strategy to combat the development of lipotoxic heart dysfunction.


Assuntos
Tecido Adiposo/metabolismo , Cardiopatias/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipólise , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Trifosfato de Adenosina/metabolismo , Tecido Adiposo/patologia , Animais , Células COS , Ceramidas/metabolismo , Chlorocebus aethiops , Modelos Animais de Doenças , Dinaminas/metabolismo , Ácidos Graxos/metabolismo , Cardiopatias/genética , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/metabolismo , Camundongos Mutantes , Mitocôndrias Cardíacas/patologia , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/genética , Mutação , Miócitos Cardíacos/patologia , Oxirredução , Fosforilação , Ratos , Transdução de Sinais , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA