Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 9(1): 211243, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35070344

RESUMO

Nanostructured ZnO has been widely investigated as a gas sensing material. Antimony is an important dopant for ZnO that catalyses its surface reactivity and thus strengthens its gas sensing capability. However, there are not enough studies on the gas sensing of antimony-doped ZnO single wires. We fabricated and characterized ZnO/ZnO:Sb core-shell micro-wires and demonstrated that individual wires are sensitive to oxygen gas flow. Temperature and light illumination strongly affect the oxygen gas sensitivity and stability of these individual wires. It was found that these micro- and nano-wire oxygen sensors at 200°C give the highest response to oxygen, yet a vanishingly small effect of light and temperature variations. The underlying physics and the interplay between these effects are discussed in terms of surface-adsorbed oxygen, oxygen vacancies and hydrogen doping.

2.
Langmuir ; 36(22): 6314-6322, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-31257887

RESUMO

The application of external uniform magnetic fields to ferrofluid droplets affects their magnetic order at the nanoscale as well as their shape at the macroscale, thus changing their contact angle with the surface. In this work, the effects of external uniform magnetic fields on the contact angles between different oil-based ferrofluid droplets and a handful of horizontal surfaces of varying wettability were studied. The contact angle is no longer constant around the ferrofluid droplet; rather, it varies in a rich yet predictable way. Droplets dispensed in the presence of the magnetic field on oleophobic surfaces adjust such that the contact angle increases at the front and back ends and decreases at the two perpendicular positions. The opposite behavior is reported for ferrofluid droplets on oleophilic surfaces. These direction-dependent changes in the contact angle can have a significant impact on the behavior of ferrofluid droplets on gradient surfaces where they can either diminish or enhance the surface tension gradient. Our work is fundamentally relevant to potential applications involving the controlled movement of ferrofluid droplets on surfaces like the lab-on-a-chip under the combined effects of a magnetic field and either a surface tension gradient or an electric field (i.e., electrowetting). It is important to understand how the two effects interact for the optimal utilization of these effects in future applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA