Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38790928

RESUMO

Age-related macular degeneration (AMD) is the most frequent cause of blindness in developed countries. The replacement of dysfunctional human retinal pigment epithelium (hRPE) cells by the transplantation of in vitro-cultivated hRPE cells to the affected area emerges as a feasible strategy for regenerative therapy. Synthetic biomimetic membranes arise as powerful hRPE cell carriers, but as biodegradability is a requirement, it also poses a challenge due to its limited durability. hRPE cells exhibit several characteristics that putatively respond to the type of membrane carrier, and they can be used as biomarkers to evaluate and further optimize such membranes. Here, we analyze the pigmentation, transepithelial resistance, genome integrity, and maturation markers of hRPE cells plated on commercial polycarbonate (PC) versus in-house electrospun polylactide-based (PLA) membranes, both enabling separate apical/basolateral compartments. Our results show that PLA is superior to PC-based membranes for the cultivation of hRPEs, and the BEST1/RPE65 maturation markers emerge as the best biomarkers for addressing the quality of hRPE cultivated in vitro. The stability of the cultures was observed to be affected by PLA aging, which is an effect that could be partially palliated by the coating of the PLA membranes.

2.
Genes (Basel) ; 15(4)2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674434

RESUMO

Oxidative phosphorylation involves a complex multi-enzymatic mitochondrial machinery critical for proper functioning of the cell, and defects herein cause a wide range of diseases called "primary mitochondrial disorders" (PMDs). Mutations in about 400 nuclear and 37 mitochondrial genes have been documented to cause PMDs, which have an estimated birth prevalence of 1:5000. Here, we describe a 4-year-old female presenting from early childhood with psychomotor delay and white matter signal changes affecting several brain regions, including the brainstem, in addition to lactic and phytanic acidosis, compatible with Leigh syndrome, a genetically heterogeneous subgroup of PMDs. Whole genome sequencing of the family trio identified a homozygous 12.9 Kb deletion, entirely overlapping the NDUFA4 gene. Sanger sequencing of the breakpoints revealed that the genomic rearrangement was likely triggered by Alu elements flanking the gene. NDUFA4 encodes for a subunit of the respiratory chain Complex IV, whose activity was significantly reduced in the patient's fibroblasts. In one family, dysfunction of NDUFA4 was previously documented as causing mitochondrial Complex IV deficiency nuclear type 21 (MC4DN21, OMIM 619065), a relatively mild form of Leigh syndrome. Our finding confirms the loss of NDUFA4 function as an ultra-rare cause of Complex IV defect, clinically presenting as Leigh syndrome.


Assuntos
Complexo I de Transporte de Elétrons , Doença de Leigh , Humanos , Doença de Leigh/genética , Doença de Leigh/patologia , Feminino , Pré-Escolar , Complexo IV da Cadeia de Transporte de Elétrons/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Linhagem , Deleção de Sequência
3.
Genome Biol ; 24(1): 216, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773136

RESUMO

BACKGROUND: Oxidation Resistance 1 (OXR1) gene is a highly conserved gene of the TLDc domain-containing family. OXR1 is involved in fundamental biological and cellular processes, including DNA damage response, antioxidant pathways, cell cycle, neuronal protection, and arginine methylation. In 2019, five patients from three families carrying four biallelic loss-of-function variants in OXR1 were reported to be associated with cerebellar atrophy. However, the impact of OXR1 on cellular functions and molecular mechanisms in the human brain is largely unknown. Notably, no human disease models are available to explore the pathological impact of OXR1 deficiency. RESULTS: We report a novel loss-of-function mutation in the TLDc domain of the human OXR1 gene, resulting in early-onset epilepsy, developmental delay, cognitive disabilities, and cerebellar atrophy. Patient lymphoblasts show impaired cell survival, proliferation, and hypersensitivity to oxidative stress. These phenotypes are rescued by TLDc domain replacement. We generate patient-derived induced pluripotent stem cells (iPSCs) revealing impaired neural differentiation along with dysregulation of genes essential for neurodevelopment. We identify that OXR1 influences histone arginine methylation by activating protein arginine methyltransferases (PRMTs), suggesting OXR1-dependent mechanisms regulating gene expression during neurodevelopment. We model the function of OXR1 in early human brain development using patient-derived brain organoids revealing that OXR1 contributes to the spatial-temporal regulation of histone arginine methylation in specific brain regions. CONCLUSIONS: This study provides new insights into pathological features and molecular underpinnings associated with OXR1 deficiency in patients.


Assuntos
Cerebelo , Histonas , Proteínas Mitocondriais , Doenças Neurodegenerativas , Humanos , Arginina/genética , Arginina/metabolismo , Atrofia , Histonas/metabolismo , Metilação , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Cerebelo/patologia
4.
JIMD Rep ; 64(5): 360-366, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701324

RESUMO

The branched-chain amino acids (BCAA) leucine, valine, and isoleucine provide precursors for monomethyl branched-chain fatty acids (BCFA). Established reference ranges for BCFAs are lacking. In maple syrup urine disease (MSUD), a rare inborn error of BCAA metabolism, the endogen production is impaired and MSUD patients are treated with a low protein (low BCAA) diet. The protein restriction may affect the dietary intake of BCFA, depending on the dietary choices made. Patients with MSUD are prescribed a more or less protein-restricted diet depending on the severity of the disease. The combination of a protein-restricted diet and subsequent impaired endogenous synthesis may render MSUD patients sensitive to BCFA deficiency, with yet unknown implications. To investigate the possibility of lower circulatory BCFA levels in MSUD that favors dietary BCFA supplementation, we first established fasting-state reference ranges for selected BCFAs and saturated/unsaturated fatty acids in plasma. Then, the effect of fasting on BCFA levels was evaluated by comparing the distribution in a fasting versus a non-fasting cohort. To test the hypothesis that BCFA deficiency could contribute to MSUD pathophysiology, we recruited patients with intermittent, intermediate, and classical form of MSUD and analyzed the corresponding BCFA z-scores. None of the BCFA species had |z-scores| > 2 relative to the reference range. Our findings do not support the requirement of BCFA supplementation in MSUD patients. The origin of BCFAs is discussed. Impaired capacity to synthesize BCFA do not manifest as reduced plasma levels in MSUD, suggesting that endogenous synthesis is dispensable for plasma levels.

5.
Stem Cells Transl Med ; 12(8): 536-552, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37459045

RESUMO

Retinal pigment epithelium (RPE) is a critical cell monolayer forming the blood-retina-barrier (BRB) and a permeable bridge between the choriocapillaris and the retina. RPE is also crucial in maintaining photoreceptor function and for completing the visual cycle. Loss of the RPE is associated with the development of degenerative diseases like age-related macular degeneration (AMD). To treat diseases like AMD, pluripotent stem cell-derived RPE (pRPE) has been recently explored extensively as a regenerative module. pRPE like other ectodermal tissues requires specific lineage differentiation and long-term in vitro culturing for maturation. Therefore, understanding the differentiation process of RPE could be useful for stem cell-based RPE derivation. Developing pRPE-based transplants and delivering them into the subretinal space is another aspect that has garnered interest in the last decade. In this review, we discuss the basic strategies currently employed for stem cell-based RPE derivation, their delivery, and recent clinical studies related to pRPE transplantation in patients. We have also discussed a few limitations with in vitro RPE culture and potential solutions to overcome such problems which can be helpful in developing functional RPE tissue.


Assuntos
Degeneração Macular , Células-Tronco Pluripotentes , Humanos , Epitélio Pigmentado da Retina/metabolismo , Retina , Degeneração Macular/terapia , Degeneração Macular/metabolismo , Diferenciação Celular
6.
Biomedicines ; 11(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36830851

RESUMO

The retinal pigment epithelium (RPE) forms an important cellular monolayer, which contributes to the normal physiology of the eye. Damage to the RPE leads to the development of degenerative diseases, such as age-related macular degeneration (AMD). Apart from acting as a physical barrier between the retina and choroidal blood vessels, the RPE is crucial in maintaining photoreceptor (PR) and visual functions. Current clinical intervention to treat early stages of AMD includes stem cell-derived RPE transplantation, which is still in its early stages of evolution. Therefore, it becomes essential to derive RPEs which are functional and exhibit features as observed in native human RPE cells. The conventional strategy is to use the knowledge obtained from developmental studies using various animal models and stem cell-based exploratory studies to understand RPE biogenies and developmental trajectory. This article emphasises such studies and aims to present a comprehensive understanding of the basic biology, including the genetics and molecular pathways of RPE development. It encompasses basic developmental biology and stem cell-based developmental studies to uncover RPE differentiation. Knowledge of the in utero developmental cues provides an inclusive methodology required for deriving RPEs using stem cells.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34909682

RESUMO

BACKGROUND AND OBJECTIVE: A number of studies have highlighted muscle-specific mechanisms of thermogenesis involving futile cycling of Ca2+ driven by sarco (endo)plasmic reticulum Ca2+-ATPase (SERCA) and generating heat from ATP hydrolysis to be a promising strategy to counteract obesity and metabolic dysfunction. However, to the best of our knowledge, no experimental studies concerning the metabolic effects of pharmacologically targeting SERCA in human skeletal muscle cells have been reported. Thus, in the present study, we aimed to explore the effects of SERCA-activating compound, CDN1163, on energy metabolism in differentiated human skeletal muscle cells (myotubes). METHODS: In this study, we used primary myotube cultures derived from muscle biopsies of the musculus vastus lateralis and musculi interspinales from lean, healthy male donors. Energy metabolism in myotubes was studied using radioactive substrates. Oxygen consumption rate was assessed with the Seahorse XF24 bioanalyzer, whereas metabolic genes and protein expressions were determined by qPCR and immunoblotting, respectively. RESULTS: Both acute (4 â€‹h) and chronic (5 days) treatment of myotubes with CDN1163 showed increased uptake and oxidation of glucose, as well as complete fatty acid oxidation in the presence of carbonyl cyanide 4-(trifluromethoxy)phenylhydrazone (FCCP). These effects were supported by measurement of oxygen consumption rate, in which the oxidative spare capacity and maximal respiration were enhanced after CDN1163-treatment. In addition, chronic treatment with CDN1163 improved cellular uptake of oleic acid (OA) and fatty acid ß-oxidation. The increased OA metabolism was accompanied by enhanced mRNA-expression of carnitine palmitoyl transferase (CPT) 1B, pyruvate dehydrogenase kinase (PDK) 4, as well as increased AMP-activated protein kinase (AMPK)Thr172 phosphorylation. Moreover, following chronic CDN1163 treatment, the expression levels of stearoyl-CoA desaturase (SCD) 1 was decreased together with de novo lipogenesis from acetic acid and formation of diacylglycerol (DAG) from OA. CONCLUSION: Altogether, these results suggest that SERCA activation by CDN1163 enhances energy metabolism in human myotubes, which might be favourable in relation to disorders that are related to metabolic dysfunction such as obesity and type 2 diabetes mellitus.

8.
Commun Biol ; 4(1): 1354, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857879

RESUMO

Oxidative DNA damage in the brain has been implicated in neurodegeneration and cognitive decline. DNA glycosylases initiate base excision repair (BER), the main pathway for oxidative DNA base lesion repair. NEIL1 and NEIL3 DNA glycosylases affect cognition in mice, while the role of NEIL2 remains unclear. Here, we investigate the impact of NEIL2 and its potential overlap with NEIL1 on behavior in knockout mouse models. Neil1-/-Neil2-/- mice display hyperactivity, reduced anxiety and improved learning. Hippocampal oxidative DNA base lesion levels are comparable between genotypes and no mutator phenotype is found. Thus, impaired canonical repair is not likely to explain the altered behavior. Electrophysiology suggests reduced axonal activation in the hippocampal CA1 region in Neil1-/-Neil2-/- mice and lack of NEIL1 and NEIL2 causes dysregulation of genes in CA1 relevant for synaptic function. We postulate a cooperative function of NEIL1 and NEIL2 in genome regulation, beyond canonical BER, modulating behavior in mice.


Assuntos
Ansiedade/genética , DNA Glicosilases/genética , Aprendizagem , Camundongos/psicologia , Animais , DNA Glicosilases/metabolismo , Regulação da Expressão Gênica , Hipocampo/fisiologia , Masculino , Camundongos/genética , Camundongos Knockout , Estresse Oxidativo/fisiologia
10.
Cell Rep ; 30(12): 4165-4178.e7, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209476

RESUMO

Oxidation resistance gene 1 (OXR1) protects cells against oxidative stress. We find that male mice with brain-specific isoform A knockout (Oxr1A-/-) develop fatty liver. RNA sequencing of male Oxr1A-/- liver indicates decreased growth hormone (GH) signaling, which is known to affect liver metabolism. Indeed, Gh expression is reduced in male mice Oxr1A-/- pituitary gland and in rat Oxr1A-/- pituitary adenoma cell-line GH3. Oxr1A-/- male mice show reduced fasting-blood GH levels. Pull-down and proximity ligation assays reveal that OXR1A is associated with arginine methyl transferase PRMT5. OXR1A-depleted GH3 cells show reduced symmetrical dimethylation of histone H3 arginine 2 (H3R2me2s), a product of PRMT5 catalyzed methylation, and chromatin immunoprecipitation (ChIP) of H3R2me2s shows reduced Gh promoter enrichment. Finally, we demonstrate with purified proteins that OXR1A stimulates PRMT5/MEP50-catalyzed H3R2me2s. Our data suggest that OXR1A is a coactivator of PRMT5, regulating histone arginine methylation and thereby GH production within the pituitary gland.


Assuntos
Arginina/metabolismo , Histonas/metabolismo , Proteínas Mitocondriais/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Feminino , Regulação da Expressão Gênica , Hormônio do Crescimento/sangue , Hormônio do Crescimento/metabolismo , Hormônios/metabolismo , Imunidade/genética , Fígado/metabolismo , Fígado/patologia , Masculino , Metilação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/química , Proteínas Mitocondriais/deficiência , Especificidade de Órgãos , Hipófise/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Domínios Proteicos , Ratos , Receptores da Somatotropina/metabolismo , Fator de Transcrição STAT5/metabolismo , Relação Estrutura-Atividade , Transcriptoma/genética
11.
Dis Model Mech ; 12(7)2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31278192

RESUMO

Skeletal muscle wasting and atrophy is one of the more severe clinical impairments resulting from the progression of Huntington's disease (HD). Mitochondrial dysfunction may play a significant role in the etiology of HD, but the specific condition of mitochondria in muscle has not been widely studied during the development of HD. To determine the role of mitochondria in skeletal muscle during the early stages of HD, we analyzed quadriceps femoris muscle from 24-, 36-, 48- and 66-month-old transgenic minipigs that expressed the N-terminal portion of mutated human huntingtin protein (TgHD) and age-matched wild-type (WT) siblings. We found altered ultrastructure of TgHD muscle tissue and mitochondria. There was also significant reduction of activity of citrate synthase and respiratory chain complexes (RCCs) I, II and IV, decreased quantity of oligomycin-sensitivity conferring protein (OSCP) and the E2 subunit of pyruvate dehydrogenase (PDHE2), and differential expression of optic atrophy 1 protein (OPA1) and dynamin-related protein 1 (DRP1) in the skeletal muscle of TgHD minipigs. Statistical analysis identified several parameters that were dependent only on HD status and could therefore be used as potential biomarkers of disease progression. In particular, the reduction of biomarker RCCII subunit SDH30 quantity suggests that similar pathogenic mechanisms underlie disease progression in TgHD minipigs and HD patients. The perturbed biochemical phenotype was detectable in TgHD minipigs prior to the development of ultrastructural changes and locomotor impairment, which become evident at the age of 48 months. Mitochondrial disturbances may contribute to energetic depression in skeletal muscle in HD, which is in concordance with the mobility problems observed in this model.This article has an associated First Person interview with the first author of the paper.


Assuntos
Modelos Animais de Doenças , Metabolismo Energético , Doença de Huntington/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Animais , Animais Geneticamente Modificados , Peso Corporal , DNA/metabolismo , Progressão da Doença , Transporte de Elétrons , Humanos , Proteína Huntingtina/genética , Doença de Huntington/patologia , Mitocôndrias Musculares/ultraestrutura , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/ultraestrutura , Mutação , Fosforilação Oxidativa , Suínos , Porco Miniatura
12.
Neurodegener Dis ; 19(1): 22-34, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31167196

RESUMO

BACKGROUND: Huntington's disease (HD) is a devastating neurodegenerative disorder caused by CAG triplet expansions in the huntingtin gene. Oxidative stress is linked to HD pathology, although it is not clear whether this is an effect or a mediator of disease. The transgenic (TgHD) minipig expresses the N-terminal part of human-mutated huntingtin and represents a unique model to investigate therapeutic strategies towards HD. A more detailed characterization of this model is needed to fully utilize its potential. METHODS: In this study, we focused on the molecular and cellular features of fibroblasts isolated from TgHD minipigs and the wild-type (WT) siblings at different ages, pre-symptomatic at the age of 24-36 months and with the onset of behavioural symptoms at the age of 48 months. We measured oxidative stress, the expression of oxidative stress-related genes, proliferation capacity along with the expression of cyclin B1 and D1 proteins, cellular permeability, and the integrity of the nuclear DNA (nDNA) and mitochondrial DNA in these cells. RESULTS: TgHD fibroblasts isolated from 48-month-old animals showed increased oxidative stress, which correlated with the overexpression of SOD2 encoding mitochondrial superoxide dismutase 2, and the NEIL3 gene encoding DNA glycosylase involved in replication-associated repair of oxidized DNA. TgHD cells displayed an abnormal proliferation capacity and permeability. We further demonstrated increased nDNA damage in pre-symptomatic TgHD fibroblasts (isolated from animals aged 24-36 months). CONCLUSIONS: Our results unravel phenotypic alterations in primary fibroblasts isolated from the TgHD minipig model at the age of 48 months. Importantly, nDNA damage appears to precede these phenotypic alterations. Our results highlight the impact of fibroblasts from TgHD minipigs in studying the molecular mechanisms of HD pathophysiology that gradually occur with age.


Assuntos
Envelhecimento/metabolismo , Fibroblastos/metabolismo , Proteína Huntingtina/metabolismo , Animais , Animais Geneticamente Modificados , Divisão Celular , Dano ao DNA , DNA Mitocondrial/genética , Regulação da Expressão Gênica , Humanos , Proteína Huntingtina/genética , Peroxidação de Lipídeos , N-Glicosil Hidrolases/biossíntese , N-Glicosil Hidrolases/genética , Estresse Oxidativo , Fenótipo , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/biossíntese , Superóxido Dismutase/genética , Suínos , Porco Miniatura
13.
Transl Oncol ; 12(1): 76-83, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30273860

RESUMO

Tumor hypoxia contributes to therapy resistance and metastatic progression of locally advanced rectal cancer (LARC). We postulated that the tumor mitochondrial metabolism, manifested by reactive oxygen species (ROS) and mitochondrial DNA (mtDNA) damage, reflects how hypoxic conditions connect to cancer-induced systemic inflammation and poor outcome. Levels of ROS and mtDNA damage were analyzed in three colorectal cancer (CRC) cell lines cultured for 24 hours under normoxia (21% O2) or hypoxia (0.2% O2) and serum sampled at the time of diagnosis from 35 LARC patients participating in a prospective therapy study. Compared with normoxia, ROS were significantly repressed and mtDNA damage was significantly enhanced in the hypoxic CRC cell lines; hence, a low ratio of ROS to mtDNA damage was an indicator of hypoxic conditions. In the LARC patients, low serum ROS were associated with elevated levels of circulating carcinoembryonic antigen and tumor choline concentration, both indicative of unfavorable biology, as well as adverse progression-free and overall survival. A low ratio of ROS to mtDNA damage in serum was associated with poor local tumor response to the neoadjuvant treatment and, of note, elevated systemic inflammation factors (C-reactive protein, the interleukin-1 receptor antagonist, and factors involved in tumor necrosis factor signaling), indicating that deficient treatment response locally and detrimental inflammation systemically link to a hypoxic mitochondrial metabolism. In conclusion, serum ROS and damaged mtDNA may be markers of the mitochondrial metabolism driven by the state of oxygenation of the primary tumor and possibly implicated in systemic inflammation and adverse outcome of LARC.

14.
Dis Model Mech ; 11(10)2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30254085

RESUMO

Huntington's disease (HD) is a monogenic, progressive, neurodegenerative disorder with currently no available treatment. The Libechov transgenic minipig model for HD (TgHD) displays neuroanatomical similarities to humans and exhibits slow disease progression, and is therefore more powerful than available mouse models for the development of therapy. The phenotypic characterization of this model is still ongoing, and it is essential to validate biomarkers to monitor disease progression and intervention. In this study, the behavioral phenotype (cognitive, motor and behavior) of the TgHD model was assessed, along with biomarkers for mitochondrial capacity, oxidative stress, DNA integrity and DNA repair at different ages (24, 36 and 48 months), and compared with age-matched controls. The TgHD minipigs showed progressive accumulation of the mutant huntingtin (mHTT) fragment in brain tissue and exhibited locomotor functional decline at 48 months. Interestingly, this neuropathology progressed without any significant age-dependent changes in any of the other biomarkers assessed. Rather, we observed genotype-specific effects on mitochondrial DNA (mtDNA) damage, mtDNA copy number, 8-oxoguanine DNA glycosylase activity and global level of the epigenetic marker 5-methylcytosine that we believe is indicative of a metabolic alteration that manifests in progressive neuropathology. Peripheral blood mononuclear cells (PBMCs) were relatively spared in the TgHD minipig, probably due to the lack of detectable mHTT. Our data demonstrate that neuropathology in the TgHD model has an age of onset of 48 months, and that oxidative damage and electron transport chain impairment represent later states of the disease that are not optimal for assessing interventions.This article has an associated First Person interview with the first author of the paper.


Assuntos
Comportamento Animal , Doença de Huntington/patologia , 8-Hidroxi-2'-Desoxiguanosina , Animais , Animais Geneticamente Modificados , Dano ao DNA , Reparo do DNA , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Modelos Animais de Doenças , Metabolismo Energético , Genoma , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Mitocôndrias/metabolismo , Degeneração Neural/patologia , Especificidade de Órgãos , Suínos , Porco Miniatura
15.
Sci Rep ; 8(1): 9817, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29959348

RESUMO

Huntington's disease (HD) is a progressive neurodegenerative disorder primarily affecting the basal ganglia and is caused by expanded CAG repeats in the huntingtin gene. Except for CAG sizing, mitochondrial and nuclear DNA (mtDNA and nDNA) parameters have not yet proven to be representative biomarkers for disease and future therapy. Here, we identified a general suppression of genes associated with aerobic metabolism in peripheral blood mononuclear cells (PBMCs) from HD patients compared to controls. In HD, the complex II subunit SDHB was lowered although not sufficiently to affect complex II activity. Nevertheless, we found decreased level of factors associated with mitochondrial biogenesis and an associated dampening of the mitochondrial DNA damage frequency in HD, implying an early defect in mitochondrial activity. In contrast to mtDNA, nDNA from HD patients was four-fold more modified than controls and demonstrated that nDNA integrity is severely reduced in HD. Interestingly, the level of nDNA damage correlated inversely with the total functional capacity (TFC) score; an established functional score of HD. Our data show that PBMCs are a promising source to monitor HD progression and highlights nDNA damage and diverging mitochondrial and nuclear genome responses representing early cellular impairments in HD.


Assuntos
Dano ao DNA , DNA Mitocondrial/análise , Instabilidade Genômica , Doença de Huntington/patologia , Leucócitos Mononucleares/patologia , Mitocôndrias/patologia , Adulto , Idoso , Estudos de Casos e Controles , DNA Mitocondrial/genética , Feminino , Humanos , Doença de Huntington/genética , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Adulto Jovem
16.
DNA Repair (Amst) ; 61: 46-55, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29202295

RESUMO

Oxidation of DNA bases, an inevitable consequence of oxidative stress, requires the base excision repair (BER) pathway for repair. Caenorhabditis elegans is a well-established model to study phenotypic consequences and cellular responses to oxidative stress. To better understand how BER affects phenotypes associated with oxidative stress, we characterised the C. elegans nth-1 mutant, which lack the only DNA glycosylase dedicated to repair of oxidative DNA base damage, the NTH-1 DNA glycosylase. We show that nth-1 mutants have mitochondrial dysfunction characterised by lower mitochondrial DNA copy number, reduced mitochondrial membrane potential, and increased steady-state levels of reactive oxygen species. Consistently, nth-1 mutants express markers of chronic oxidative stress with high basal phosphorylation of MAP-kinases (MAPK) but further activation of MAPK in response to the superoxide generator paraquat is attenuated. Surprisingly, nth-1 mutants also failed to induce apoptosis in response to paraquat. The ability to induce apoptosis in response to paraquat was regained when basal MAPK activation was restored to wild type levels. In conclusion, the failure of nth-1 mutants to induce apoptosis in response to paraquat is not a direct effect of the DNA repair deficiency but an indirect consequence of the compensatory cellular stress response that includes MAPK activation.


Assuntos
Apoptose/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , DNA Glicosilases/deficiência , Endonucleases/deficiência , Células Germinativas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Caenorhabditis elegans , Respiração Celular , DNA Mitocondrial , Dosagem de Genes , Potencial da Membrana Mitocondrial , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
17.
Mitochondrion ; 40: 16-28, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28893634

RESUMO

The mitochondrial DNA (mtDNA) resides in the vicinity of energy-rich reactions. Thus, chemical modifications of mtDNA might mirror mitochondrial processes and could serve as biomarkers of metabolic processes in the mitochondria. This hypothesis was tested by assessing modifications at 17 different sites in the mtDNA as a function of cell type, oxidative stress and mitochondrial activity. Two mouse mutants with a metabolic phenotype were compared to wild-type (WT) mice: the ogg1-/- mouse that lacks the 8-oxoguanine DNA glycosylase (OGG1), and the alkbh7-/- mouse missing the ALKBH7 protein that has been implicated in fatty acid oxidation. It was found that cell type, oxidative stress and mitochondrial complex activity shaped distinct modification patterns in mtDNA, and that OGG1 and ALKBH7 independently modulated these modification patterns. The modifications included ribonucleotides, which also accumulated in mtDNA with age. Interestingly, this age-dependent accumulation most likely involves DNA repair, as mtDNA from ogg1-/- mice did not accumulate modifications with age. On the other hand, alkbh7-/- mtDNA accumulated more modifications with age than WT mtDNA. Our results show that mtDNA is dynamically modified with metabolic activity and imply a novel synergy between metabolism and mtDNA repair proteins.


Assuntos
Enzimas AlkB/metabolismo , Metilação de DNA , Reparo do DNA , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Fatores Etários , Enzimas AlkB/genética , Animais , DNA Glicosilases/deficiência , Camundongos , Camundongos Knockout , Mitocôndrias/genética
18.
DNA Repair (Amst) ; 61: 56-62, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29207315

RESUMO

Mitochondrial DNA (mtDNA) resides in close proximity to metabolic reactions, and is maintained by the 8-oxoguanine DNA glycosylase (Ogg1) and other members of the base excision repair pathway. Here, we tested the hypothesis that changes in liver metabolism as under fasting/feeding conditions would be sensed by liver mtDNA, and that Ogg1 deficient mice might unravel a metabolic phenotype. Wild type (WT) and ogg1-/- mice were either fed ad libitum or subjected to fasting for 24h, and the corresponding effects on liver gene expression, DNA damage, as well as serum values were analyzed. Ogg1 deficient mice fed ad libitum exhibited hyperglycemia, elevated insulin levels and higher liver glycogen content as well as increased accumulation of 8oxoG in mtDNA compared to age- and gender matched WT mice. Interestingly, these phenotypes were absent in ogg1-/- mice during fasting. Gene expression and functional analyses suggest that the diabetogenic phenotype in the ogg1-/- mice is due to a failure to suppress gluconeogensis in the fed state. The ogg1-/- mice exhibited reduced mitochondrial electron transport chain (ETC) capacity and a combined low activity of the pyruvate dehydrogenase (PDH), alluding to inefficient channeling of glycolytic products into the citric acid cycle. Our data demonstrate a physiological role of base excision repair that goes beyond DNA maintenance, and implies that DNA repair is involved in regulating metabolism.


Assuntos
DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Gluconeogênese , Fígado/metabolismo , Animais , Dano ao DNA , Reparo do DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Jejum/metabolismo , Feminino , Glucose/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Ativação Transcricional
19.
Sci Rep ; 7(1): 8206, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811665

RESUMO

Cultured epidermal cell sheets (CES) containing undifferentiated cells are useful for treating skin burns and have potential for regenerative treatment of other types of epithelial injuries. The undifferentiated phenotype is therefore important for success in both applications. This study aimed to optimize a method for one-week storage of CES for their widespread distribution and use in regenerative medicine. The effect of storage temperatures 4 °C, 8 °C, 12 °C, 16 °C, and 24 °C on CES was evaluated. Analyses included assessment of viability, mitochondrial reactive oxygen species (ROS), membrane damage, mitochondrial DNA (mtDNA) integrity, morphology, phenotype and cytokine secretion into storage buffer. Lowest cell viability was seen at 4 °C. Compared to non-stored cells, ABCG2 expression increased between temperatures 8-16 °C. At 24 °C, reduced ABCG2 expression coincided with increased mitochondrial ROS, as well as increased differentiation, cell death and mtDNA damage. P63, C/EBPδ, CK10 and involucrin fluorescence combined with morphology observations supported retention of undifferentiated cell phenotype at 12 °C, transition to differentiation at 16 °C, and increased differentiation at 24 °C. Several cytokines relevant to healing were upregulated during storage. Importantly, cells stored at 12 °C showed similar viability and undifferentiated phenotype as the non-stored control suggesting that this temperature may be ideal for storage of CES.


Assuntos
Criopreservação , Células Epidérmicas , Temperatura , Biomarcadores , Diferenciação Celular , Membrana Celular/metabolismo , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Criopreservação/métodos , Citocinas/metabolismo , Células Epidérmicas/citologia , Células Epidérmicas/metabolismo , Células Epidérmicas/ultraestrutura , Humanos , Fenótipo , Regeneração , Fluxo de Trabalho
20.
Sci Rep ; 7(1): 5081, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28698547

RESUMO

Flavopiridol (FP) is a pan-cyclin dependent kinase inhibitor, which shows strong efficacy in inducing cancer cell apoptosis. Although FP is potent against most cancer cells in vitro, unfortunately it proved less efficacious in clinical trials in various aggressive cancers. To date, the molecular mechanisms of the FP resistance are mostly unknown. Here, we report that a small fraction human prostate cancer DU145 cells can survive long-term FP treatment and emerge as FP-resistant cells (DU145FP). These DU145FP cells show accumulated mitochondrial lesions with stronger glycolytic features, and they proliferate in slow-cycling and behave highly migratory with strong anti-apoptotic potential. In addition, the cells are less sensitive to cisplatin and docetaxel-induced apoptotic pressure, and over-express multiple stem cell associated biomarkers. Our studies collectively uncover for the first time that FP-resistant prostate cancer cells show metabolic remodeling, and the metabolic plasticity might be required for the FP resistance-associated cancer cell stemness up-regulation.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Flavonoides/uso terapêutico , Piperidinas/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Cisplatino/farmacologia , Docetaxel/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavonoides/farmacologia , Fase G2/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Piperidinas/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA