Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(694): eadf1128, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37134152

RESUMO

Although blocking the binding of vascular endothelial growth factor (VEGF) to neuropilin-2 (NRP2) on tumor cells is a potential strategy to treat aggressive carcinomas, a lack of effective reagents that can be used clinically has hampered this potential therapy. Here, we describe the generation of a fully humanized, high-affinity monoclonal antibody (aNRP2-10) that specifically inhibits the binding of VEGF to NRP2, conferring antitumor activity without causing toxicity. Using triple-negative breast cancer as a model, we demonstrated that aNRP2-10 could be used to isolate cancer stem cells (CSCs) from heterogeneous tumor populations and inhibit CSC function and epithelial-to-mesenchymal transition. aNRP2-10 sensitized cell lines, organoids, and xenografts to chemotherapy and inhibited metastasis by promoting the differentiation of CSCs to a state that is more responsive to chemotherapy and less prone to metastasis. These data provide justification for the initiation of clinical trials designed to improve the response of patients with aggressive tumors to chemotherapy using this monoclonal antibody.


Assuntos
Neuropilina-2 , Neoplasias de Mama Triplo Negativas , Humanos , Neuropilina-2/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ligação Proteica , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/metabolismo , Linhagem Celular Tumoral , Neuropilina-1/metabolismo
2.
J Pharmacol Exp Ther ; 328(3): 758-65, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19056934

RESUMO

Phosphatidylinositol 3-kinases (PI3Ks) are key elements in the signaling cascades that lie downstream of many cellular receptors. In particular, PI3K delta and gamma isoforms contribute to inflammatory cell recruitment and subsequent activation. For this reason, in a series of preclinical studies, we tested the potential of a recently developed small-molecule inhibitor of these two isoforms, TG100-115 [3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7-yl]phenol], as a form of anti-inflammatory therapy for respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD). To determine pharmacokinetic profiles, aerosolized formulations of the drug were delivered to mice by a nose-only inhalation route, yielding high pulmonary TG100-115 levels with minimal systemic exposure. Safety assessments were favorable, with no clinical or histological changes noted after 21 days of daily dosing. In a murine asthma model, aerosolized TG100-115 markedly reduced the pulmonary eosinophilia and the concomitant interleukin-13 and mucin accumulation characteristic of this disease. As a functional benefit, interventional dosing schedules of this inhibitor also reduced airway hyper-responsiveness. To model the pulmonary neutrophilia characteristic of COPD, mice were exposed to either intranasal lipopolysaccharide or inhaled smoke. Aerosolized TG100-115 again inhibited these inflammatory patterns, most notably in the smoke model, where interventional therapy overcame the steroid-resistant nature of the pulmonary inflammation. In conclusion, aerosolized TG100-115 displays pharmacokinetic, safety, and biological activity profiles favorable for further development as a therapy for both asthma and COPD. Furthermore, these studies support the hypothesis that PI3K delta and gamma are suitable molecular targets for these diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Fenóis/uso terapêutico , Pteridinas/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Administração Intranasal , Aerossóis , Animais , Anti-Inflamatórios/administração & dosagem , Hiper-Reatividade Brônquica/tratamento farmacológico , Classe Ib de Fosfatidilinositol 3-Quinase , Modelos Animais de Doenças , Isoenzimas/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/toxicidade , Camundongos , Neutrófilos/efeitos dos fármacos , Neutrófilos/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA