RESUMO
Multiomic profiling of single cells by sequencing is a powerful technique for investigating cellular diversity. Existing droplet-based microfluidic methods produce many cell-free droplets, underutilizing bead barcodes and reagents. Combinatorial indexing on microplates is more efficient for barcoding but labor-intensive. Here we present Overloading And unpacKing (OAK), which uses a droplet-based barcoding system for initial compartmentalization followed by a second aliquoting round to achieve combinatorial indexing. We demonstrate OAK's versatility with single-cell RNA sequencing as well as paired single-nucleus RNA sequencing and accessible chromatin profiling. We further showcase OAK's performance on complex samples, including differentiated bronchial epithelial cells and primary retinal tissue. Finally, we examine transcriptomic responses of over 400,000 melanoma cells to a RAF inhibitor, belvarafenib, discovering a rare resistant cell population (0.12%). OAK's ultra-high throughput, broad compatibility, high sensitivity, and simplified procedures make it a powerful tool for large-scale molecular analysis, even for rare cells.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Linhagem Celular Tumoral , Melanoma/genética , Melanoma/tratamento farmacológico , Melanoma/patologia , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , TranscriptomaRESUMO
Macrophages exhibit remarkable functional plasticity, a requirement for their central role in tissue homeostasis. During chronic inflammation, macrophages acquire sustained inflammatory 'states' that contribute to disease, but there is limited understanding of the regulatory mechanisms that drive their generation. Here we describe a systematic functional genomics approach that combines genome-wide phenotypic screening in primary murine macrophages with transcriptional and cytokine profiling of genetic perturbations in primary human macrophages to uncover regulatory circuits of inflammatory states. This process identifies regulators of five distinct states associated with key features of macrophage function. Among these regulators, loss of the N6-methyladenosine (m6A) writer components abolishes m6A modification of TNF transcripts, thereby enhancing mRNA stability and TNF production associated with multiple inflammatory pathologies. Thus, phenotypic characterization of primary murine and human macrophages describes the regulatory circuits underlying distinct inflammatory states, revealing post-transcriptional control of TNF mRNA stability as an immunosuppressive mechanism in innate immunity.
RESUMO
We were attracted to the therapeutic potential of inhibiting Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b), a RING E3 ligase that plays a critical role in regulating the activation of T cells. However, given that only protein-protein interactions were involved, it was unclear whether inhibition by a small molecule would be a viable approach. After screening an â¼6 billion member DNA-encoded library (DEL) using activated Cbl-b, we identified compound 1 as a hit for which the cis-isomer (2) was confirmed by biochemical and surface plasmon resonance (SPR) assays. Our hit optimization effort was greatly accelerated when we obtained a cocrystal structure of 2 with Cbl-b, which demonstrated induced binding at the substrate binding site, namely, the Src homology-2 (SH2) domain. This was quite noteworthy given that there are few reports of small molecule inhibitors that bind to SH2 domains and block protein-protein interactions. Structure- and property-guided optimization led to compound 27, which demonstrated measurable cell activity, albeit only at high concentrations.
RESUMO
Wnt ligands oligomerize Frizzled (Fzd) and Lrp5/6 receptors to control the specification and activity of stem cells in many species. How Wnt signaling is selectively activated in different stem cell populations, often within the same organ, is not understood. In lung alveoli, we show that distinct Wnt receptors are expressed by epithelial (Fzd5/6), endothelial (Fzd4), and stromal (Fzd1) cells. Fzd5 is uniquely required for alveolar epithelial stem cell activity, whereas fibroblasts utilize distinct Fzd receptors. Using an expanded repertoire of Fzd-Lrp agonists, we could activate canonical Wnt signaling in alveolar epithelial stem cells via either Fzd5 or, unexpectedly, non-canonical Fzd6. A Fzd5 agonist (Fzd5ag) or Fzd6ag stimulated alveolar epithelial stem cell activity and promoted survival in mice after lung injury, but only Fzd6ag promoted an alveolar fate in airway-derived progenitors. Therefore, we identify a potential strategy for promoting regeneration without exacerbating fibrosis during lung injury.
Assuntos
Lesão Pulmonar , Camundongos , Animais , Proteínas Wnt , Receptores Frizzled , Via de Sinalização Wnt , Células Epiteliais Alveolares , Células-TroncoRESUMO
Tumor-associated macrophages are composed of distinct populations arising from monocytes or tissue macrophages, with a poorly understood link to disease pathogenesis. Here, we demonstrate that mouse monocyte migration was supported by glutaminyl-peptide cyclotransferase-like (QPCTL), an intracellular enzyme that mediates N-terminal modification of several substrates, including the monocyte chemoattractants CCL2 and CCL7, protecting them from proteolytic inactivation. Knockout of Qpctl disrupted monocyte homeostasis, attenuated tumor growth and reshaped myeloid cell infiltration, with loss of monocyte-derived populations with immunosuppressive and pro-angiogenic profiles. Antibody targeting of the receptor CSF1R, which more broadly eliminates tumor-associated macrophages, reversed tumor growth inhibition in Qpctl-/- mice and prevented lymphocyte infiltration. Modulation of QPCTL synergized with anti-PD-L1 to expand CD8+ T cells and limit tumor growth. QPCTL inhibition constitutes an effective approach for myeloid cell-targeted cancer immunotherapy.
Assuntos
Aminoaciltransferases , Linfócitos T CD8-Positivos , Quimiocinas , Neoplasias , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Animais , Linfócitos T CD8-Positivos/patologia , Quimiocinas/metabolismo , Imunoterapia , Infiltração Leucêmica , Camundongos , Camundongos Knockout , Monócitos , Neoplasias/imunologiaRESUMO
With a growing interest in utilizing visible light to drive biocatalytic processes, several light-harvesting units and approaches have been employed to harness the synthetic potential of heme monooxygenases and carry out selective oxyfunctionalization of a wide range of substrates. While the fields of cytochrome P450 and Ru(II) photochemistry have separately been prolific, it is not until the turn of the 21st century that they converged. Non-covalent and subsequently covalently attached Ru(II) complexes were used to promote rapid intramolecular electron transfer in bacterial P450 enzymes. Photocatalytic activity with Ru(II)-modified P450 enzymes was achieved under reductive conditions with a judicious choice of a sacrificial electron donor. The initial concept of Ru(II)-modified P450 enzymes was further improved using protein engineering, photosensitizer functionalization and was successfully applied to other P450 enzymes. In this review, we wish to present the recent contributions from our group and others in utilizing Ru(II) complexes coupled with P450 enzymes in the broad context of photobiocatalysis, protein assemblies and chemoenzymatic reactions. The merging of chemical catalysts with the synthetic potential of P450 enzymes has led to the development of several chemoenzymatic approaches. Moreover, strained Ru(II) compounds have been shown to selectively inhibit P450 enzymes by releasing aromatic heterocycle containing molecules upon visible light excitation taking advantage of the rapid ligand loss feature in those complexes.
Assuntos
Sistema Enzimático do Citocromo P-450/química , Iminas/química , Compostos de Rutênio/química , Biocatálise , Transporte de ElétronsRESUMO
The pan-proteasome inhibitor bortezomib demonstrated clinical efficacy in off-label trials of Systemic Lupus Erythematosus. One potential mechanism of this clinical benefit is from the depletion of pathogenic immune cells (plasmablasts and plasmacytoid dendritic cells). However, bortezomib is cytotoxic against nonimmune cells, which limits its use for autoimmune diseases. An attractive alternative is to selectively inhibit the immune cell-specific immunoproteasome to deplete pathogenic immune cells and spare nonhematopoietic cells. Here, we disclose the development of highly subunit-selective immunoproteasome inhibitors using insights obtained from the first bona fide human immunoproteasome cocrystal structures. Evaluation of these inhibitors revealed that immunoproteasome-specific inhibition does not lead to immune cell death as anticipated and that targeting viability requires inhibition of both immuno- and constitutive proteasomes. CRISPR/Cas9-mediated knockout experiments confirmed upregulation of the constitutive proteasome upon disruption of the immunoproteasome, protecting cells from death. Thus, immunoproteasome inhibition alone is not a suitable approach to deplete immune cells.
Assuntos
Desenho de Fármacos , Imunidade Celular/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/síntese química , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Imunidade Celular/fisiologia , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/farmacologia , Estrutura Terciária de ProteínaRESUMO
Foxp3+ regulatory T cells (Treg cells) are crucial for the maintenance of immune homeostasis both in lymphoid tissues and in non-lymphoid tissues. Here we demonstrate that the ability of intestinal Treg cells to constrain microbiota-dependent interleukin (IL)-17-producing helper T cell (TH17 cell) and immunoglobulin A responses critically required expression of the transcription factor c-Maf. The terminal differentiation and function of several intestinal Treg cell populations, including RORγt+ Treg cells and follicular regulatory T cells, were c-Maf dependent. c-Maf controlled Treg cell-derived IL-10 production and prevented excessive signaling via the kinases PI(3)K (phosphatidylinositol-3-OH kinase) and Akt and the metabolic checkpoint kinase complex mTORC1 (mammalian target of rapamycin) and expression of inflammatory cytokines in intestinal Treg cells. c-Maf deficiency in Treg cells led to profound dysbiosis of the intestinal microbiota, which when transferred to germ-free mice was sufficient to induce exacerbated intestinal TH17 responses, even in a c-Maf-competent environment. Thus, c-Maf acts to preserve the identity and function of intestinal Treg cells, which is essential for the establishment of host-microbe symbiosis.
Assuntos
Imunoglobulina A/biossíntese , Intestinos/imunologia , Microbiota , Proteínas Proto-Oncogênicas c-maf/fisiologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Células Cultivadas , Colite/imunologia , Citocinas/metabolismo , Disbiose , Regulação da Expressão Gênica , Homeostase , Interleucina-10/biossíntese , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-maf/genética , Proteínas Proto-Oncogênicas c-maf/metabolismo , Linfócitos T Reguladores/enzimologiaRESUMO
Loss of function of the nuclear deubiquitinating enzyme BRCA1-associated protein-1 (BAP1) is associated with a wide spectrum of cancers. We report that tamoxifen-induced BAP1 deletion in adult mice resulted in severe thymic atrophy. BAP1 was critical for T cell development at several stages. In the thymus, BAP1 was required for progression through the pre-T cell receptor checkpoint. Peripheral T cells lacking BAP1 demonstrated a defect in homeostatic and antigen-driven expansion. Deletion of BAP1 resulted in suppression of E2F target genes and defects in cell cycle progression, which was dependent on the catalytic activity of BAP1, but did not require its interaction with host cell factor-1 (HCF-1). Loss of BAP1 led to increased monoubiquitination of histone H2A at Lys119 (H2AK119ub) throughout the T cell lineage, in particular in immature thymocytes, but did not alter trimethylation of histone H3 at Lys27 (H3K27me3). Deletion of BAP1 also abrogated B cell development in the bone marrow. Our findings uncover a nonredundant function for BAP1 in maintaining the lymphoid lineage.
Assuntos
Linfócitos T/metabolismo , Timócitos/metabolismo , Timo/metabolismo , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Animais , Atrofia , Ciclo Celular/genética , Perfilação da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Lisina/genética , Lisina/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Timo/patologia , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , UbiquitinaçãoRESUMO
Inflammatory responses mediated by NOD2 rely on RIP2 kinase and ubiquitin ligase XIAP for the activation of nuclear factor κB (NF-κB), mitogen-activated protein kinases (MAPKs), and cytokine production. Herein, we demonstrate that selective XIAP antagonism blocks NOD2-mediated inflammatory signaling and cytokine production by interfering with XIAP-RIP2 binding, which removes XIAP from its ubiquitination substrate RIP2. We also establish that the kinase activity of RIP2 is dispensable for NOD2 signaling. Rather, the conformation of the RIP2 kinase domain functions to regulate binding to the XIAP-BIR2 domain. Effective RIP2 kinase inhibitors block NOD2 signaling by disrupting RIP2-XIAP interaction. Finally, we identify NOD2 signaling and XIAP-dependent ubiquitination sites on RIP2 and show that mutating these lysine residues adversely affects NOD2 pathway signaling. Overall, these results reveal a critical role for the XIAP-RIP2 interaction in NOD2 inflammatory signaling and provide a molecular basis for the design of innovative therapeutic strategies based on XIAP antagonists and RIP2 kinase inhibitors.
Assuntos
Aminoquinolinas/farmacologia , Inflamação/prevenção & controle , Proteína Adaptadora de Sinalização NOD2/antagonistas & inibidores , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Sulfonas/farmacologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Animais , Células Cultivadas , Humanos , Inflamação/metabolismo , Inflamação/patologia , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Fosforilação , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Transdução de Sinais , Ubiquitina/metabolismo , Ubiquitinação , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/antagonistas & inibidoresRESUMO
Inborn errors of DNA repair or replication underlie a variety of clinical phenotypes. We studied 5 patients from 4 kindreds, all of whom displayed intrauterine growth retardation, chronic neutropenia, and NK cell deficiency. Four of the 5 patients also had postnatal growth retardation. The association of neutropenia and NK cell deficiency, which is unusual among primary immunodeficiencies and bone marrow failures, was due to a blockade in the bone marrow and was mildly symptomatic. We discovered compound heterozygous rare mutations in Go-Ichi-Ni-San (GINS) complex subunit 1 (GINS1, also known as PSF1) in the 5 patients. The GINS complex is essential for eukaryotic DNA replication, and homozygous null mutations of GINS component-encoding genes are embryonic lethal in mice. The patients' fibroblasts displayed impaired GINS complex assembly, basal replication stress, impaired checkpoint signaling, defective cell cycle control, and genomic instability, which was rescued by WT GINS1. The residual levels of GINS1 activity reached 3% to 16% in patients' cells, depending on their GINS1 genotype, and correlated with the severity of growth retardation and the in vitro cellular phenotype. The levels of GINS1 activity did not influence the immunological phenotype, which was uniform. Autosomal recessive, partial GINS1 deficiency impairs DNA replication and underlies intra-uterine (and postnatal) growth retardation, chronic neutropenia, and NK cell deficiency.
Assuntos
Proteínas de Ligação a DNA/deficiência , Doenças Genéticas Inatas , Transtornos do Crescimento , Síndromes de Imunodeficiência , Células Matadoras Naturais , Neutropenia , Animais , Proteínas de Ligação a DNA/imunologia , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/imunologia , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/imunologia , Transtornos do Crescimento/genética , Transtornos do Crescimento/imunologia , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Lactente , Masculino , Camundongos , Neutropenia/genética , Neutropenia/imunologiaRESUMO
Retinoic acid-related orphan receptor gamma t (RORγt) is a nuclear receptor, which is selectively expressed by various lymphocytes. RORγt is critical for the development of secondary and tertiary lymphoid organs, and for the thymic development of the T cell lineage. RORγt has been extensively studied as the master transcription factor of IL-17 expression and Th17 cells, which are strongly associated with various inflammatory and autoimmune conditions. Given its essential role in promoting pro-inflammatory responses, it is not surprising that the expression of RORγt is tightly controlled. By its nature as a nuclear receptor, RORγt activity is also regulated in a ligand-dependent manner, which makes it an attractive drug target. In addition, multiple post-translational mechanisms, including post-translational modifications, such as acetylation and ubiquitinylation, as well as interactions with various co-factors, modulate RORγt function. Here we attempt a comprehensive review of the post-translational regulation of RORγt, an area that holds the potential to transform the way we target the RORγt/IL-17 pathway, by enabling the development of safe and highly selective modulators of RORγt activity.
Assuntos
Doenças Autoimunes/imunologia , Interleucina-17/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Animais , Humanos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Processamento de Proteína Pós-TraducionalRESUMO
Modification of the δ-sultam ring of RORc inverse agonist 2 led to the discovery of more polar oxa-sultam 65. The less lipophilic inverse agonist (65) displayed high potency in a biochemical assay, which translated into inhibition of IL-17 production in human peripheral blood mononuclear cells. The successful reduction of lipophilicity of this new analog gave rise to additional improvements in ROR selectivity and aqueous kinetic solubility, as well as reduction in plasma protein binding, while maintaining high cellular permeability.
Assuntos
Lipídeos/química , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Descoberta de Drogas , Agonismo Inverso de Drogas , Naftalenossulfonatos/químicaRESUMO
The IL-1 and IL-10 family cytokines are important regulators of intestinal immunity. Whereas these cytokines have protective roles in response to mucosal damage or infection, they also contribute to pathology in certain settings. How these cytokines function to maintain intestinal homoeostasis, and under what circumstances they contribute to disease is poorly understood. Recent studies have revealed a multi-layered regulatory network wherein IL-1 and IL-10 family cytokines impact each other's production. The workings of this network vary in different intestinal regions, reflecting the influence of resident microbiota and the distribution of distinct immune cell populations in different regions of the intestine. We review these findings here, and discuss them in the context of the current understanding of the functions of these cytokine families in health and disease. We further highlight important areas of future investigation.
Assuntos
Interleucina-10/imunologia , Interleucina-1/imunologia , Intestinos/imunologia , Animais , HumanosRESUMO
Retinoic acid receptor-related orphan receptor C (RORc, RORγ, or NR1F3) is a nuclear receptor that plays a major role in the production of interleukin (IL)-17. Considerable efforts have been directed toward the discovery of selective RORc inverse agonists as potential treatments of inflammatory diseases such as psoriasis and rheumatoid arthritis. Using the previously reported tertiary sulfonamide 1 as a starting point, we engineered structural modifications that significantly improved human and rat metabolic stabilities while maintaining a potent and highly selective RORc inverse agonist profile. The most advanced δ-sultam compound, GNE-3500 (27, 1-{4-[3-fluoro-4-((3S,6R)-3-methyl-1,1-dioxo-6-phenyl-[1,2]thiazinan-2-ylmethyl)-phenyl]-piperazin-1-yl}-ethanone), possessed favorable RORc cellular potency with 75-fold selectivity for RORc over other ROR family members and >200-fold selectivity over 25 additional nuclear receptors in a cell assay panel. The favorable potency, selectivity, in vitro ADME properties, in vivo PK, and dose-dependent inhibition of IL-17 in a PK/PD model support the evaluation of 27 in preclinical studies.
Assuntos
Óxidos S-Cíclicos/administração & dosagem , Óxidos S-Cíclicos/farmacologia , Descoberta de Drogas , Agonismo Inverso de Drogas , Leucócitos Mononucleares/efeitos dos fármacos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Sulfonamidas/química , Tiazinas/administração & dosagem , Tiazinas/farmacologia , Administração Oral , Animais , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Feminino , Humanos , Leucócitos Mononucleares/citologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Ligação Proteica , Conformação Proteica , Ratos , Relação Estrutura-AtividadeRESUMO
The nuclear receptor (NR) retinoic acid receptor-related orphan receptor gamma (RORγ, RORc, or NR1F3) is a promising target for the treatment of autoimmune diseases. RORc is a critical regulator in the production of the pro-inflammatory cytokine interleukin-17. We discovered a series of potent and selective imidazo[1,5-a]pyridine and -pyrimidine RORc inverse agonists. The most potent compounds displayed >300-fold selectivity for RORc over the other ROR family members, PPARγ, and NRs in our cellular selectivity panel. The favorable potency, selectivity, and physiochemical properties of GNE-0946 (9) and GNE-6468 (28), in addition to their potent suppression of IL-17 production in human primary cells, support their use as chemical biology tools to further explore the role of RORc in human biology.
Assuntos
Imidazóis/química , Imidazóis/farmacologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Piridinas/química , Piridinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Animais , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Linhagem Celular , Células Cultivadas , Descoberta de Drogas , Células HEK293 , Humanos , Imidazóis/metabolismo , Imidazóis/farmacocinética , Interleucina-17/imunologia , Fígado/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Piridinas/metabolismo , Piridinas/farmacocinética , Pirimidinas/metabolismo , Pirimidinas/farmacocinética , Ratos , Relação Estrutura-AtividadeRESUMO
A minor structural change to tertiary sulfonamide RORc ligands led to distinct mechanisms of action. Co-crystal structures of two compounds revealed mechanistically consistent protein conformational changes. Optimized phenylsulfonamides were identified as RORc agonists while benzylsulfonamides exhibited potent inverse agonist activity. Compounds behaving as agonists in our biochemical assay also gave rise to an increased production of IL-17 in human PBMCs whereas inverse agonists led to significant suppression of IL-17 under the same assay conditions. The most potent inverse agonist compound showed >180-fold selectivity over the ROR isoforms as well as all other nuclear receptors that were profiled.
RESUMO
T helper 1 (Th1) cell-associated immunity exacerbates ileitis induced by oral Toxoplasma gondii infection. We show here that attenuated ileitis observed in interleukin-22 (IL-22)-deficient mice was associated with reduced production of Th1-cell-promoting IL-18. IL-22 not only augmented the expression of Il18 mRNA and inactive precursor protein (proIL-18) in intestinal epithelial cells after T. gondii or Citrobacter rodentium infection, but also maintained the homeostatic amount of proIL-18 in the ileum. IL-22, however, did not induce the processing to active IL-18, suggesting a two-step regulation of IL-18 in these cells. Although IL-18 exerted pathogenic functions during ileitis triggered by T. gondii, it was required for host defense against C. rodentium. Conversely, IL-18 was required for the expression of IL-22 in innate lymphoid cells (ILCs) upon T. gondii infection. Our results define IL-18 as an IL-22 target gene in epithelial cells and describe a complex mutual regulation of both cytokines during intestinal infection.
Assuntos
Infecções por Enterobacteriaceae/imunologia , Interleucina-18/imunologia , Interleucinas/imunologia , Mucosa Intestinal/imunologia , Toxoplasmose/imunologia , Animais , Células Cultivadas , Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/microbiologia , Células Epiteliais/imunologia , Ileíte/imunologia , Ileíte/microbiologia , Ileíte/parasitologia , Íleo/imunologia , Íleo/microbiologia , Íleo/parasitologia , Inflamação/imunologia , Interferon gama/biossíntese , Interleucina-18/biossíntese , Interleucinas/genética , Mucosa Intestinal/microbiologia , Mucosa Intestinal/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Técnicas de Cultura de Órgãos , RNA Mensageiro/biossíntese , Células Th1/imunologia , Toxoplasma/imunologia , Toxoplasmose/parasitologia , Regulação para Cima , Interleucina 22RESUMO
T-helper type 17 (TH17) cells that produce the cytokines interleukin-17A (IL-17A) and IL-17F are implicated in the pathogenesis of several autoimmune diseases. The differentiation of TH17 cells is regulated by transcription factors such as RORγt, but post-translational mechanisms preventing the rampant production of pro-inflammatory IL-17A have received less attention. Here we show that the deubiquitylating enzyme DUBA is a negative regulator of IL-17A production in T cells. Mice with DUBA-deficient T cells developed exacerbated inflammation in the small intestine after challenge with anti-CD3 antibodies. DUBA interacted with the ubiquitin ligase UBR5, which suppressed DUBA abundance in naive T cells. DUBA accumulated in activated T cells and stabilized UBR5, which then ubiquitylated RORγt in response to TGF-ß signalling. Our data identify DUBA as a cell-intrinsic suppressor of IL-17 production.