Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 9(5): 529-40, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26893369

RESUMO

Smooth muscle contraction is controlled by the regulated activity of the myosin heavy chain ATPase (Myh11). Myh11 mutations have diverse effects in the cardiovascular, digestive and genitourinary systems in humans and animal models. We previously reported a recessive missense mutation, meltdown (mlt), which converts a highly conserved tryptophan to arginine (W512R) in the rigid relay loop of zebrafish Myh11. The mlt mutation disrupts myosin regulation and non-autonomously induces invasive expansion of the intestinal epithelium. Here, we report two newly identified missense mutations in the switch-1 (S237Y) and coil-coiled (L1287M) domains of Myh11 that fail to complement mlt Cell invasion was not detected in either homozygous mutant but could be induced by oxidative stress and activation of oncogenic signaling pathways. The smooth muscle defect imparted by the mlt and S237Y mutations also delayed intestinal transit, and altered vascular function, as measured by blood flow in the dorsal aorta. The cell-invasion phenotype induced by the three myh11 mutants correlated with the degree of myosin deregulation. These findings suggest that the vertebrate intestinal epithelium is tuned to the physical state of the surrounding stroma, which, in turn, governs its response to physiologic and pathologic stimuli. Genetic variants that alter the regulation of smooth muscle myosin might be risk factors for diseases affecting the intestine, vasculature, and other tissues that contain smooth muscle or contractile cells that express smooth muscle proteins, particularly in the setting of redox stress.


Assuntos
Motilidade Gastrointestinal , Intestinos/anatomia & histologia , Intestinos/irrigação sanguínea , Cadeias Pesadas de Miosina/metabolismo , Neovascularização Fisiológica , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Exoma/genética , Genes Dominantes , Testes Genéticos , Heterozigoto , Homozigoto , Intestinos/fisiologia , Mutação/genética , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Oxirredução , Estresse Oxidativo , Análise de Sequência de DNA , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
2.
J Neurosci ; 32(32): 11144-56, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22875945

RESUMO

Acidification of synaptic vesicles relies on the vacuolar-type ATPase (V-ATPase) and provides the electrochemical driving force for neurotransmitter exchange. The regulatory mechanisms that ensure assembly of the V-ATPase holoenzyme on synaptic vesicles are unknown. Rabconnectin3α (Rbc3α) is a potential candidate for regulation of V-ATPase activity because of its association with synaptic vesicles and its requirement for acidification of intracellular compartments. Here, we provide the first evidence for a role of Rbc3α in synaptic vesicle acidification and neurotransmission. In this study, we characterized mutant alleles of rbc3α isolated from a large-scale screen for zebrafish with auditory/vestibular defects. We show that Rbc3α is localized to basal regions of hair cells in which synaptic vesicles are present. To determine whether Rbc3α regulates V-ATPase activity, we examined the acidification of synaptic vesicles and localization of the V-ATPase in hair cells. In contrast to wild-type hair cells, we observed that synaptic vesicles had elevated pH, and a cytosolic subunit of the V-ATPase was no longer enriched in synaptic regions of mutant hair cells. As a consequence of defective acidification of synaptic vesicles, afferent neurons in rbc3α mutants had reduced firing rates and reduced accuracy of phase-locked action potentials in response to mechanical stimulation of hair cells. Collectively, our data suggest that Rbc3α modulates synaptic transmission in hair cells by promoting V-ATPase activity in synaptic vesicles.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Ciliadas Auditivas/citologia , Bombas de Próton/metabolismo , Vesículas Sinápticas/metabolismo , Estimulação Acústica/efeitos adversos , Potenciais de Ação/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Análise de Variância , Animais , Animais Geneticamente Modificados , Inibidores Enzimáticos/farmacologia , Reação de Fuga/efeitos dos fármacos , Reação de Fuga/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Larva , Sistema da Linha Lateral/metabolismo , Macrolídeos/farmacologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Microscopia Confocal , Biologia Molecular , Mutação/genética , Estimulação Física , RNA Mensageiro/metabolismo , Transtornos de Sensação/genética , Vesículas Sinápticas/efeitos dos fármacos , ATPases Vacuolares Próton-Translocadoras/metabolismo , Gravação em Vídeo , Transtornos da Visão/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Development ; 134(1): 127-36, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17164418

RESUMO

The forebrain constitutes the most anterior part of the central nervous system, and is functionally crucial and structurally conserved in all vertebrates. It includes the dorsally positioned telencephalon and eyes, the ventrally positioned hypothalamus, and the more caudally located diencephalon [from rostral to caudal: the prethalamus, the zona limitans intrathalamica (ZLI), the thalamus and the pretectum]. Although antagonizing Wnt proteins are known to establish the identity of the telencephalon and eyes, it is unclear how various subdivisions are established within the diencephalon--a complex integration center and relay station of the vertebrate brain. The conserved forebrain-specific zinc-finger-containing protein Fezl plays a crucial role in regulating neuronal differentiation in the vertebrate forebrain. Here, we report a new and essential role of zebrafish Fezl in establishing regional subdivisions within the diencephalon. First, reduced activity of fezl results in a deficit of the prethalamus and a corresponding expansion of the ZLI. Second, Gal4-UAS-mediated fezl overexpression in late gastrula is capable of expanding the prethalamus telencephalon and hypothalamus at the expense of the ZLI and other fore- and/or mid-brain regions. Such altered brain regionalization is preceded by the early downregulation of wnt expression in the prospective diencephalon. Finally, fezl overexpression is able to restore the anterior forebrain and downregulate wnt expression in Headless- and/or Tcf3 (also known as Tcf7l1a)-deficient embryos. Our findings reveal that Fezl is crucial for establishing regional subdivisions within the diencephalon and may also play a role in the development of the telencephalon and hypothalamus.


Assuntos
Padronização Corporal/genética , Proteínas de Transporte/metabolismo , Diencéfalo/embriologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Dedos de Zinco/genética , Animais , Animais Geneticamente Modificados , Diencéfalo/anatomia & histologia , Diencéfalo/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Oligonucleotídeos Antissenso/farmacologia , Tálamo/embriologia , Transgenes , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
4.
Proc Natl Acad Sci U S A ; 103(13): 5143-8, 2006 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-16549779

RESUMO

The development of vertebrate basal forebrain dopaminergic (DA) neurons requires the conserved zinc finger protein Too Few (Tof/Fezl) in zebrafish. However, how Tof/Fezl regulates the commitment and differentiation of these DA neurons is not known. Proneural genes encoding basic helix-loop-helix transcription factors regulate the development of multiple neuronal lineages, but their involvement in vertebrate DA neuron determination is unclear. Here we show that neurogenin 1 (ngn1), a vertebrate proneural gene related to the Drosophila atonal, is expressed in and required for specification of DA progenitor cells, and when overexpressed leads to supernumerary DA neurons in the forebrain of zebrafish. Overexpression of ngn1 is also sufficient to induce tyrosine hydroxylase expression in addition to the pan-neuronal marker Hu in nonneural ectoderm. We further show that Tof/Fezl is required to establish basal forebrain ngn1-expressing DA progenitor domains. These findings identify Ngn1 as a determinant of brain DA neurons and provide insights into how Tof/Fezl regulates the development of these clinically important neuronal types.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Transporte/metabolismo , Dopamina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Forma Celular , Sequência Conservada , Dopamina/biossíntese , Ectoderma/citologia , Ectoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mutação/genética , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Prosencéfalo/embriologia , Células-Tronco/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA