Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33019602

RESUMO

The purpose of this study was to examine prefrontal cortex (PFC) activation, neuromuscular function, and perceptual measures in response to a fatiguing task, following thermal alterations of an exercising arm. Nineteen healthy adults completed three experimental sessions. At baseline, participants performed maximum voluntary isometric contractions (MVIC) of the elbow flexors. Next, participants submerged their right arm in a water bath for 15 min. Cold (C), neutral (N), and hot (H) water temperatures were maintained at 8, 33, and 44 °C, respectively. Following water immersion, participants performed an isometric elbow flexion contraction, at 20% of their MVIC, for 5 min. Ratings of perceived exertion (RPE), muscular discomfort, and task demands were assessed. Functional near-infrared spectroscopy was used to measure activation (oxygenation) of the PFC during the fatiguing task. Reductions in MVIC torque at the end of the fatiguing task were greater for the H (25.7 ± 8.4%) and N (22.2 ± 9.6%) conditions, compared to the C condition (17.5 ± 8.9%, p < 0.05). The increase in oxygenation of the PFC was greater for the H (13.3 ± 4.9 µmol/L) and N (12.4 ± 4.4 µmol/L) conditions, compared to the C condition (10.3 ± 3.8 µmol/L, p < 0.001) at the end of the fatiguing task. The increase in RPE, muscular discomfort, and task demands were greater in the H condition compared to the N and C conditions (p < 0.01). These results indicate that precooling an exercising arm attenuates the rise in PFC activation, muscle fatigue, and psychological rating during a fatiguing task.


Assuntos
Fadiga Muscular , Músculo Esquelético , Córtex Pré-Frontal , Adulto , Eletromiografia , Humanos , Contração Isométrica , Córtex Pré-Frontal/fisiologia , Torque
2.
Eur J Appl Physiol ; 117(6): 1119-1130, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28432420

RESUMO

PURPOSE: This study examined the mechanisms for force and power reduction during and up to 48 h after maximal eccentric contractions of the knee extensor muscles in young men and women. METHODS: 13 men (22.8 ± 2.6 years) and 13 women (21.6 ± 2.2 years) performed 150 maximal effort eccentric contractions (5 sets of 30) with the knee extensor muscles at 60° s-1. Maximal voluntary isometric contractions (MVIC) and maximal voluntary concentric contractions (MVCC) were performed before and after the 150 eccentric contractions. The MVCCs involved a set of two isokinetic contractions at 60° s-1 and sets of isotonic contractions performed at seven different resistance loads (1 N m, 10, 20, 30, 40, 50, and 60% MVIC). Electrical stimulation was used during the MVICs and at rest to determine changes in voluntary activation and contractile properties. RESULTS: At baseline, men were stronger than women (MVIC: 276 ± 48 vs. 133 ± 37 N m) and more powerful (MVCC: 649 ± 77 vs. 346 ± 78 W). At termination of the eccentric contractions, voluntary activation, resting twitch amplitude, and peak power during concentric contractions at the seven loads and at 60° s-1 decreased (P < 0.05) similarly in the men and women. At 48 h post-exercise, the MVIC torque, power (for loads ≥20-60% MVIC), and voluntary activation remained depressed (P < 0.05), but the resting twitch had returned to baseline (P > 0.05) with no sex differences. CONCLUSION: Central mechanisms were primarily responsible for the depressed maximal force production up to 48 h after repeated eccentric contractions of the knee extensors and these mechanisms were similar in men and women.


Assuntos
Joelho/fisiologia , Contração Muscular , Músculo Esquelético/fisiologia , Feminino , Humanos , Masculino , Fadiga Muscular , Músculo Esquelético/inervação , Fatores Sexuais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA