Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
PLoS Comput Biol ; 20(4): e1012028, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662765

RESUMO

Intrinsically disordered regions (IDRs) are segments of proteins without stable three-dimensional structures. As this flexibility allows them to interact with diverse binding partners, IDRs play key roles in cell signaling and gene expression. Despite the prevalence and importance of IDRs in eukaryotic proteomes and various biological processes, associating them with specific molecular functions remains a significant challenge due to their high rates of sequence evolution. However, by comparing the observed values of various IDR-associated properties against those generated under a simulated model of evolution, a recent study found most IDRs across the entire yeast proteome contain conserved features. Furthermore, it showed clusters of IDRs with common "evolutionary signatures," i.e. patterns of conserved features, were associated with specific biological functions. To determine if similar patterns of conservation are found in the IDRs of other systems, in this work we applied a series of phylogenetic models to over 7,500 orthologous IDRs identified in the Drosophila genome to dissect the forces driving their evolution. By comparing models of constrained and unconstrained continuous trait evolution using the Brownian motion and Ornstein-Uhlenbeck models, respectively, we identified signals of widespread constraint, indicating conservation of distributed features is mechanism of IDR evolution common to multiple biological systems. In contrast to the previous study in yeast, however, we observed limited evidence of IDR clusters with specific biological functions, which suggests a more complex relationship between evolutionary constraints and function in the IDRs of multicellular organisms.


Assuntos
Evolução Molecular , Proteínas Intrinsicamente Desordenadas , Filogenia , Animais , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Sequência Conservada/genética , Biologia Computacional/métodos , Drosophila/genética , Proteoma/química , Proteoma/metabolismo , Proteoma/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo
2.
Elife ; 122024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38275292

RESUMO

Modern microscopy has revealed that core nuclear functions, including transcription, replication, and heterochromatin formation, occur in spatially restricted clusters. Previous work from our lab has shown that subnuclear high-concentration clusters of transcription factors may play a role in regulating RNA synthesis in the early Drosophila embryo. A nearly ubiquitous feature of eukaryotic transcription factors is that they contain intrinsically disordered regions (IDRs) that often arise from low complexity amino acid sequences within the protein. It has been proposed that IDRs within transcription factors drive co-localization of transcriptional machinery and target genes into high-concentration clusters within nuclei. Here, we test that hypothesis directly, by conducting a broad survey of the subnuclear localization of IDRs derived from transcription factors. Using a novel algorithm to identify IDRs in the Drosophila proteome, we generated a library of IDRs from transcription factors expressed in the early Drosophila embryo. We used this library to perform a high-throughput imaging screen in Drosophila Schneider-2 (S2) cells. We found that while subnuclear clustering does not occur when the majority of IDRs are expressed alone, it is frequently seen in full-length transcription factors. These results are consistent in live Drosophila embryos, suggesting that IDRs are insufficient to drive the subnuclear clustering behavior of transcription factors. Furthermore, the clustering of transcription factors in living embryos was unaffected by the deletion of IDR sequences. Our results demonstrate that IDRs are unlikely to be the primary molecular drivers of the clustering observed during transcription, suggesting a more complex and nuanced role for these disordered protein sequences.


Assuntos
Proteínas Intrinsicamente Desordenadas , Fatores de Transcrição , Animais , Fatores de Transcrição/genética , Conformação Proteica , Proteoma , Sequência de Aminoácidos , Drosophila/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo
3.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873137

RESUMO

Long-read sequencing is driving rapid progress in genome assembly across all major groups of life, including species of the family Drosophilidae, a longtime model system for genetics, genomics, and evolution. We previously developed a cost-effective hybrid Oxford Nanopore (ONT) long-read and Illumina short-read sequencing approach and used it to assemble 101 drosophilid genomes from laboratory cultures, greatly increasing the number of genome assemblies for this taxonomic group. The next major challenge is to address the laboratory culture bias in taxon sampling by sequencing genomes of species that cannot easily be reared in the lab. Here, we build upon our previous methods to perform amplification-free ONT sequencing of single wild flies obtained either directly from the field or from ethanol-preserved specimens in museum collections, greatly improving the representation of lesser studied drosophilid taxa in whole-genome data. Using Illumina Novaseq X Plus and ONT P2 sequencers with R10.4.1 chemistry, we set a new benchmark for inexpensive hybrid genome assembly at US $150 per genome while assembling genomes from as little as 35 ng of genomic DNA from a single fly. We present 183 new genome assemblies for 179 species as a resource for drosophilid systematics, phylogenetics, and comparative genomics. Of these genomes, 62 are from pooled lab strains and 121 from single adult flies. Despite the sample limitations of working with small insects, most single-fly diploid assemblies are comparable in contiguity (>1Mb contig N50), completeness (>98% complete dipteran BUSCOs), and accuracy (>QV40 genome-wide with ONT R10.4.1) to assemblies from inbred lines. We present a well-resolved multi-locus phylogeny for 360 drosophilid and 4 outgroup species encompassing all publicly available (as of August 2023) genomes for this group. Finally, we present a Progressive Cactus whole-genome, reference-free alignment built from a subset of 298 suitably high-quality drosophilid genomes. The new assemblies and alignment, along with updated laboratory protocols and computational pipelines, are released as an open resource and as a tool for studying evolution at the scale of an entire insect family.

4.
G3 (Bethesda) ; 13(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37770067

RESUMO

Identifying protein sequences with common ancestry is a core task in bioinformatics and evolutionary biology. However, methods for inferring and aligning such sequences in annotated genomes have not kept pace with the increasing scale and complexity of the available data. Thus, in this work, we implemented several improvements to the traditional methodology that more fully leverage the redundancy of closely related genomes and the organization of their annotations. Two highlights include the application of the more flexible k-clique percolation algorithm for identifying clusters of orthologous proteins and the development of a novel technique for removing poorly supported regions of alignments with a phylogenetic hidden Markov model (phylo-HMM). In making the latter, we wrote a fully documented Python package Homomorph that implements standard HMM algorithms and created a set of tutorials to promote its use by a wide audience. We applied the resulting pipeline to a set of 33 annotated Drosophila genomes, generating 22,813 orthologous groups and 8,566 high-quality alignments.


Assuntos
Algoritmos , Genômica , Filogenia , Alinhamento de Sequência , Biologia Computacional/métodos , Proteínas/genética
5.
bioRxiv ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798351

RESUMO

Transcription often occurs in bursts as gene promoters switch stochastically between active and inactive states. Enhancers can dictate transcriptional activity in animal development through the modulation of burst frequency, duration, or amplitude. Previous studies observed that different enhancers can achieve a wide range of transcriptional outputs through the same strategies of bursting control. For example, despite responding to different transcription factors, all even-skipped enhancers increase transcription by upregulating burst frequency and amplitude while burst duration remains largely constant. These shared bursting strategies suggest that a unified molecular mechanism constraints how enhancers modulate transcriptional output. Alternatively, different enhancers could have converged on the same bursting control strategy because of natural selection favoring one of these particular strategies. To distinguish between these two scenarios, we compared transcriptional bursting between endogenous and ectopic gene expression patterns. Because enhancers act under different regulatory inputs in ectopic patterns, dissimilar bursting control strategies between endogenous and ectopic patterns would suggest that enhancers adapted their bursting strategies to their trans-regulatory environment. Here, we generated ectopic even-skipped transcription patterns in fruit fly embryos and discovered that bursting strategies remain consistent in endogenous and ectopic even-skipped expression. These results provide evidence for a unified molecular mechanism shaping even-skipped bursting strategies and serve as a starting point to uncover the realm of strategies employed by other enhancers.

6.
Elife ; 112022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36263932

RESUMO

eLife is changing its editorial process to emphasize public reviews and assessments of preprints by eliminating accept/reject decisions after peer review.


Assuntos
Revisão da Pesquisa por Pares , Editoração
7.
PLoS One ; 17(6): e0270471, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35749552

RESUMO

Our current understanding of the regulation of gene expression in the early Drosophila melanogaster embryo comes from observations of a few genes at a time, as with in situ hybridizations, or observation of gene expression levels without regards to patterning, as with RNA-sequencing. Single-nucleus RNA-sequencing however, has the potential to provide new insights into the regulation of gene expression for many genes at once while simultaneously retaining information regarding the position of each nucleus prior to dissociation based on patterned gene expression. In order to establish the use of single-nucleus RNA sequencing in Drosophila embryos prior to cellularization, here we look at gene expression in control and insulator protein, dCTCF, maternal null embryos during zygotic genome activation at nuclear cycle 14. We find that early embryonic nuclei can be grouped into distinct clusters according to gene expression. From both virtual and published in situ hybridizations, we also find that these clusters correspond to spatial regions of the embryo. Lastly, we provide a resource of candidate differentially expressed genes that might show local changes in gene expression between control and maternal dCTCF null nuclei with no detectable differential expression in bulk. These results highlight the potential for single-nucleus RNA-sequencing to reveal new insights into the regulation of gene expression in the early Drosophila melanogaster embryo.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese/genética , RNA/metabolismo , Análise de Sequência de RNA
8.
iScience ; 25(4): 104000, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35313693

RESUMO

The gut microbiota can affect how animals respond to ingested toxins, such as ethanol, which is prevalent in the diets of diverse animals and often leads to negative health outcomes in humans. Ethanol is a complex dietary factor because it acts as a toxin, behavioral manipulator, and nutritional source, with both direct effects on the host as well as indirect ones through the microbiome. Here, we developed a model for chronic, non-intoxicating ethanol ingestion in the adult fruit fly, Drosophila melanogaster, and paired this with the tractability of the fly gut microbiota, which can be experimentally removed. We linked numerous physiological, behavioral, and transcriptional variables to fly fitness, including a combination of intestinal barrier integrity, stored triglyceride levels, feeding behavior, and the immunodeficiency pathway. Our results reveal a complex tradeoff between lifespan and fecundity that is microbiome-dependent and modulated by dietary ethanol and feeding behavior.

9.
PLoS One ; 16(8): e0255680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34347855

RESUMO

New emerging infectious diseases are identified every year, a subset of which become global pandemics like COVID-19. In the case of COVID-19, many governments have responded to the ongoing pandemic by imposing social policies that restrict contacts outside of the home, resulting in a large fraction of the workforce either working from home or not working. To ensure essential services, however, a substantial number of workers are not subject to these limitations, and maintain many of their pre-intervention contacts. To explore how contacts among such "essential" workers, and between essential workers and the rest of the population, impact disease risk and the effectiveness of pandemic control, we evaluated several mathematical models of essential worker contacts within a standard epidemiology framework. The models were designed to correspond to key characteristics of cashiers, factory employees, and healthcare workers. We find in all three models that essential workers are at substantially elevated risk of infection compared to the rest of the population, as has been documented, and that increasing the numbers of essential workers necessitates the imposition of more stringent controls on contacts among the rest of the population to manage the pandemic. Importantly, however, different archetypes of essential workers differ in both their individual probability of infection and impact on the broader pandemic dynamics, highlighting the need to understand and target intervention for the specific risks faced by different groups of essential workers. These findings, especially in light of the massive human costs of the current COVID-19 pandemic, indicate that contingency plans for future epidemics should account for the impacts of essential workers on disease spread.


Assuntos
COVID-19/transmissão , Controle de Infecções , Distanciamento Físico , Recursos Humanos , COVID-19/epidemiologia , Epidemias/prevenção & controle , Pessoal de Saúde/estatística & dados numéricos , Humanos , Controle de Infecções/métodos , Controle de Infecções/normas , Controle de Infecções/estatística & dados numéricos , Modelos Estatísticos , Cidade de Nova Iorque/epidemiologia , Ocupações/estatística & dados numéricos , Pandemias , Quarentena/estatística & dados numéricos , Fatores de Risco , Populações Vulneráveis/estatística & dados numéricos , Recursos Humanos/organização & administração , Recursos Humanos/estatística & dados numéricos
10.
Elife ; 102021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34130793

RESUMO

Research in many different areas of medicine will benefit from new approaches to peer review and publishing.


Assuntos
Revisão da Pesquisa por Pares , Pré-Publicações como Assunto , Editoração , Pesquisa Biomédica , COVID-19 , Humanos
11.
Mol Phylogenet Evol ; 158: 107061, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33387647

RESUMO

The Drosophila montium species group is a clade of 94 named species, closely related to the model species D. melanogaster. The montium species group is distributed over a broad geographic range throughout Asia, Africa, and Australasia. Species of this group possess a wide range of morphologies, mating behaviors, and endosymbiont associations, making this clade useful for comparative analyses. We use genomic data from 42 available species to estimate the phylogeny and relative divergence times within the montium species group, and its relative divergence time from D. melanogaster. To assess the robustness of our phylogenetic inferences, we use 3 non-overlapping sets of 20 single-copy coding sequences and analyze all 60 genes with both Bayesian and maximum likelihood methods. Our analyses support monophyly of the group. Apart from the uncertain placement of a single species, D. baimaii, our analyses also support the monophyly of all seven subgroups proposed within the montium group. Our phylograms and relative chronograms provide a highly resolved species tree, with discordance restricted to estimates of relatively short branches deep in the tree. In contrast, age estimates for the montium crown group, relative to its divergence from D. melanogaster, depend critically on prior assumptions concerning variation in rates of molecular evolution across branches, and hence have not been reliably determined. We discuss methodological issues that limit phylogenetic resolution - even when complete genome sequences are available - as well as the utility of the current phylogeny for understanding the evolutionary and biogeographic history of this clade.


Assuntos
Drosophila/classificação , Animais , Teorema de Bayes , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Drosophila/genética , Proteínas de Drosophila/classificação , Proteínas de Drosophila/genética , Drosophila melanogaster/classificação , Drosophila melanogaster/genética , Evolução Molecular , Filogenia , Análise de Sequência de DNA
12.
Elife ; 92020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33300492

RESUMO

We used live imaging to visualize the transcriptional dynamics of the Drosophila melanogaster even-skipped gene at single-cell and high-temporal resolution as its seven stripe expression pattern forms, and developed tools to characterize and visualize how transcriptional bursting varies over time and space. We find that despite being created by the independent activity of five enhancers, even-skipped stripes are sculpted by the same kinetic phenomena: a coupled increase of burst frequency and amplitude. By tracking the position and activity of individual nuclei, we show that stripe movement is driven by the exchange of bursting nuclei from the posterior to anterior stripe flanks. Our work provides a conceptual, theoretical and computational framework for dissecting pattern formation in space and time, and reveals how the coordinated transcriptional activity of individual nuclei shapes complex developmental patterns.


Assuntos
Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Animais , Proteínas de Drosophila , Drosophila melanogaster/embriologia , Engenharia Genética , Proteínas de Homeodomínio , Morfogênese/genética , Regiões Promotoras Genéticas , Recombinação Genética , Fatores de Transcrição
13.
Elife ; 92020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258772

RESUMO

From July 2021 eLife will only review manuscripts already published as preprints, and will focus its editorial process on producing public reviews to be posted alongside the preprints.


Assuntos
Políticas Editoriais , Revisão da Pesquisa por Pares , Pré-Publicações como Assunto , Editoração , Previsões , Humanos , Modelos Teóricos , Revisão da Pesquisa por Pares/tendências , Editoração/tendências
16.
Elife ; 92020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32501217
17.
Elife ; 92020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32209226

RESUMO

eLife is making changes to its policies on peer review in response to the impact of COVID-19 on the scientific community.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Políticas Editoriais , Pandemias , Revisão da Pesquisa por Pares , Pneumonia Viral , COVID-19 , Revisão da Pesquisa por Pares/tendências , Publicações Periódicas como Assunto , Pré-Publicações como Assunto , SARS-CoV-2
18.
G3 (Bethesda) ; 10(5): 1443-1455, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32220952

RESUMO

Large groups of species with well-defined phylogenies are excellent systems for testing evolutionary hypotheses. In this paper, we describe the creation of a comparative genomic resource consisting of 23 genomes from the species-rich Drosophila montium species group, 22 of which are presented here for the first time. The montium group is well-positioned for clade genomics. Within the montium clade, evolutionary distances are such that large numbers of sequences can be accurately aligned while also recovering strong signals of divergence; and the distance between the montium group and D. melanogaster is short enough so that orthologous sequence can be readily identified. All genomes were assembled from a single, small-insert library using MaSuRCA, before going through an extensive post-assembly pipeline. Estimated genome sizes within the montium group range from 155 Mb to 223 Mb (mean = 196 Mb). The absence of long-distance information during the assembly process resulted in fragmented assemblies, with the scaffold NG50s varying widely based on repeat content and sample heterozygosity (min = 18 kb, max = 390 kb, mean = 74 kb). The total scaffold length for most assemblies is also shorter than the estimated genome size, typically by 5-15%. However, subsequent analysis showed that our assemblies are highly complete. Despite large differences in contiguity, all assemblies contain at least 96% of known single-copy Dipteran genes (BUSCOs, n = 2,799). Similarly, by aligning our assemblies to the D. melanogaster genome and remapping coordinates for a large set of transcriptional enhancers (n = 3,457), we showed that each montium assembly contains orthologs for at least 91% of D. melanogaster enhancers. Importantly, the genic and enhancer contents of our assemblies are comparable to that of far more contiguous Drosophila assemblies. The alignment of our own D. serrata assembly to a previously published PacBio D. serrata assembly also showed that our longest scaffolds (up to 1 Mb) are free of large-scale misassemblies. Our genome assemblies are a valuable resource that can be used to further resolve the montium group phylogeny; study the evolution of protein-coding genes and cis-regulatory sequences; and determine the genetic basis of ecological and behavioral adaptations.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila/genética , Drosophila melanogaster/genética , Genoma , Genômica , Filogenia
19.
PLoS Biol ; 17(6): e3000273, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31163026

RESUMO

Preprint servers such as arXiv and bioRxiv represent a highly successful and relatively low cost mechanism for providing free access to research findings. By decoupling the dissemination of manuscripts from the much slower process of evaluation and certification by journals, preprints also significantly accelerate the pace of research itself by allowing other researchers to begin building on new results immediately. If all funding agencies were to mandate posting of preprints by grantees-an approach we term Plan U (for "universal")-free access to the world's scientific output for everyone would be achieved with minimal effort. Moreover, the existence of all articles as preprints would create a fertile environment for experimentation with new peer review and research evaluation initiatives, which would benefit from a reduced barrier to entry because hosting and archiving costs were already covered.


Assuntos
Revisão da Pesquisa por Pares/tendências , Editoração/normas , Humanos , Disseminação de Informação/métodos , Internet , Revisão por Pares , Publicações , Pesquisadores , Ciência
20.
Elife ; 72018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30589412

RESUMO

The regulation of transcription requires the coordination of numerous activities on DNA, yet how transcription factors mediate these activities remains poorly understood. Here, we use lattice light-sheet microscopy to integrate single-molecule and high-speed 4D imaging in developing Drosophila embryos to study the nuclear organization and interactions of the key transcription factors Zelda and Bicoid. In contrast to previous studies suggesting stable, cooperative binding, we show that both factors interact with DNA with surprisingly high off-rates. We find that both factors form dynamic subnuclear hubs, and that Bicoid binding is enriched within Zelda hubs. Remarkably, these hubs are both short lived and interact only transiently with sites of active Bicoid-dependent transcription. Based on our observations, we hypothesize that, beyond simply forming bridges between DNA and the transcription machinery, transcription factors can organize other proteins into hubs that transiently drive multiple activities at their gene targets. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Transativadores/genética , Fatores de Transcrição/genética , Animais , Sítios de Ligação/genética , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Proteínas de Homeodomínio/metabolismo , Imageamento Tridimensional , Microscopia Confocal , Proteínas Nucleares , Ligação Proteica , Imagem com Lapso de Tempo/métodos , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA