Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Antibiot (Tokyo) ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724627

RESUMO

Antibiotic resistance is a major health problem worldwide. Pseudomonas aeruginosa is a Gram-negative pathogen with an arsenal of virulence factors and elevated antimicrobial resistance. It is a leading cause of nosocomial infections with high morbidity and mortality. The significant time and effort required to develop new antibiotics can be circumvented using alternative therapeutic strategies, including anti-virulence targets. This study aimed to investigate the anti-virulence activity of the FDA-approved drugs miconazole and phenothiazine against P. aeruginosa. The phenotypic effect of sub-inhibitory concentrations of miconazole and phenothiazine on biofilm, pyocyanin, protease, rhamnolipid and hemolysin activities in PAO1 strain was examined. qRT-PCR was used to assess the effect of drugs on quorum-sensing genes that regulate virulence. Further, the anti-virulence potential of miconazole and phenothiazine was evaluated in silico and in vivo. Miconazole showed significant inhibition of Pseudomonas virulence by reducing biofilm-formation approximately 45-48%, hemolytic-activity by 59%, pyocyanin-production by 47-49%, rhamnolipid-activity by approximately 42-47% and protease activity by 36-40%. While, phenothiazine showed lower anti-virulence activity, it inhibited biofilm (31-35%), pyocyanin (37-39%), protease (32-40%), rhamnolipid (35-40%) and hemolytic activity (47-56%). Similarly, there was significantly reduced expression of RhlR, PqsR, LasI and LasR following treatment with miconazole, but less so with phenothiazine. In-silico analysis revealed that miconazole had higher binding affinity than phenothiazine to LasR, RhlR, and PqsR QS-proteins. Furthermore, there was 100% survival in mice injected with PAO1 treated with miconazole. In conclusion, miconazole and phenothiazine are promising anti-virulence agents for P. aeruginosa.

2.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37765071

RESUMO

Currently, the treatment of Proteus mirabilis infections is considered to be complicated as the organism has become resistant to numerous antibiotic classes. Therefore, new inhibitors should be developed, targeting bacterial molecular functions. Methionine tRNA synthetase (MetRS), a member of the aminoacyl-tRNA synthetase family, is essential for protein biosynthesis offering a promising target for novel antibiotics discovery. In the context of computer-aided drug design (CADD), the current research presents the construction and analysis of a comparative homology model for P. mirabilis MetRS, enabling development of novel inhibitors with greater selectivity. Molecular Operating Environment (MOE) software was used to build a homology model for P. mirabilis MetRS using Escherichia coli MetRS as a template. The model was evaluated, and the active site of the target protein predicted from its sequence using conservation analysis. Molecular dynamic simulations were performed to evaluate the stability of the modeled protein structure. In order to evaluate the predicted active site interactions, methionine (the natural substrate of MetRS) and several inhibitors of bacterial MetRS were docked into the constructed model using MOE. After validation of the model, pharmacophore-based virtual screening for a systemically prepared dataset of compounds was performed to prove the feasibility of the proposed model, identifying possible parent compounds for further development of MetRS inhibitors against P. mirabilis.

3.
Future Med Chem ; 15(11): 937-958, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37381751

RESUMO

Aim: The previously reported dual histone deacetylase type II (HDAC II) / topoisomerase type I (Topo I) inhibitors suffer pharmacokinetic limitations because of their huge molecular weights. Materials & methods: We report the design and synthesis of a smarter novel set of uracil-linked Schiff bases (19-30) as dual HDAC II/Topo I inhibitors keeping the essential pharmacophoric features. Cytotoxicity of all compounds was assessed against three cancer cell lines. Studies of their effects on the apoptotic BAX and antiapoptotic BCL2 genes, molecular docking studies, and absorption, distribution, metabolism and excretion studies were conducted. Results: Compounds 22, 25 and 30 exhibited significant activities. The bromophenyl derivative 22 displayed the best selectivity index, with IC50 values against HDAC II and Topo I of 1.12 and 13.44 µM, respectively. Conclusion: Compound 22 could be considered a lead HDAC II/Topo I inhibitor.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Inibidores de Histona Desacetilases/farmacologia , Inibidores da Topoisomerase I/farmacologia , Histona Desacetilases/metabolismo , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Bases de Schiff/farmacologia , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Proliferação de Células , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/farmacologia
4.
Appl Microbiol Biotechnol ; 107(11): 3763-3778, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37079062

RESUMO

The resistance development is an increasing global health risk that needs innovative solutions. Repurposing drugs to serve as anti-virulence agents is suggested as an advantageous strategy to diminish bacterial resistance development. Bacterial virulence is controlled by quorum sensing (QS) system that orchestrates the expression of biofilm formation, motility, and virulence factors production as enzymes and virulent pigments. Interfering with QS could lead to bacterial virulence mitigation without affecting bacterial growth that does not result in bacterial resistance development. This study investigated the probable anti-virulence and anti-QS activities of α-adrenoreceptor blocker doxazosin against Proteus mirabilis and Pseudomonas aeruginosa. Besides in silico study, in vitro and in vivo investigations were conducted to assess the doxazosin anti-virulence actions. Doxazosin significantly diminished the biofilm formation and release of QS-controlled Chromobacterium violaceum pigment and virulence factors in P. aeruginosa and P. mirabilis, and downregulated the QS encoding genes in P. aeruginosa. Virtually, doxazosin interfered with QS proteins, and in vivo protected mice against P. mirabilis and P. aeruginosa. The role of the membranal sensors as QseC and PmrA was recognized in enhancing the Gram-negative virulence. Doxazosin downregulated the membranal sensors PmR and QseC encoding genes and could in silico interfere with them. In conclusion, this study preliminary documents the probable anti-QS and anti-virulence activities of doxazosin, which indicate its possible application as an alternative or in addition to antibiotics. However, extended toxicological and pharmacological investigations are essential to approve the feasible clinical application of doxazosin as novel efficient anti-virulence agent. KEY POINTS: • Anti-hypertensive doxazosin acquires anti-quorum sensing activities • Doxazosin diminishes the virulence of Proteus mirabilis and Pseudomonas aeruginosa • Doxazosin could dimmish the bacterial espionage.


Assuntos
Biofilmes , Fatores de Virulência , Camundongos , Animais , Fatores de Virulência/metabolismo , Doxazossina/farmacologia , Reposicionamento de Medicamentos , Percepção de Quorum , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Pseudomonas aeruginosa/metabolismo
5.
RSC Med Chem ; 14(2): 356-366, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36846364

RESUMO

Aromatase (CYP19A1) inhibitors are the mainstay therapeutics for the treatment of hormone dependant breast cancer, which accounts for approximately 70% of all breast cancer cases. However, increased resistance to the clinically used aromatase inhibitors, including letrozole and anastrazole, and off target effects, necessitates the development of aromatase inhibitors with improved drug profiles. The development of extended 4th generation pyridine based aromatase inhibitors with dual binding (haem and access channel) is therefore of interest and here we describe the design, synthesis and computational studies. Cytotoxicity and selectivity studies identified the pyridine derivative (4-bromophenyl)(6-(but-2-yn-1-yloxy)benzofuran-2-yl)(pyridin-3-yl)methanol (10c) as optimal with CYP19A1 IC50 0.83 nM (c.f. letrozole IC50 0.70 nM), and an excellent cytotoxicity and selectivity profile. Interestingly, computational studies for the 6-O-butynyloxy (10) and 6-O-pentynyloxy (11) derivatives identified an alternative access channel lined by Phe221, Trp224, Gln225 and Leu477, providing further insight into the potential binding mode and interactions of the non-steroidal aromatase inhibitors.

6.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361877

RESUMO

The development of bacterial resistance to antibiotics is an increasing public health issue that worsens with the formation of biofilms. Quorum sensing (QS) orchestrates the bacterial virulence and controls the formation of biofilm. Targeting bacterial virulence is promising approach to overcome the resistance increment to antibiotics. In a previous detailed in silico study, the anti-QS activities of twenty-two ß-adrenoreceptor blockers were screened supposing atenolol as a promising candidate. The current study aims to evaluate the anti-QS, anti-biofilm and anti-virulence activities of the ß-adrenoreceptor blocker atenolol against Gram-negative bacteria Serratia marcescens, Pseudomonas aeruginosa, and Proteus mirabilis. An in silico study was conducted to evaluate the binding affinity of atenolol to S. marcescens SmaR QS receptor, P. aeruginosa QscR QS receptor, and P. mirabilis MrpH adhesin. The atenolol anti-virulence activity was evaluated against the tested strains in vitro and in vivo. The present finding shows considerable ability of atenolol to compete with QS proteins and significantly downregulated the expression of QS- and virulence-encoding genes. Atenolol showed significant reduction in the tested bacterial biofilm formation, virulence enzyme production, and motility. Furthermore, atenolol significantly diminished the bacterial capacity for killing and protected mice. In conclusion, atenolol has potential anti-QS and anti-virulence activities against S. marcescens, P. aeruginosa, and P. mirabilis and can be used as an adjuvant in treatment of aggressive bacterial infections.


Assuntos
Atenolol , Fatores de Virulência , Camundongos , Animais , Atenolol/farmacologia , Atenolol/metabolismo , Fatores de Virulência/genética , Percepção de Quorum , Biofilmes , Bactérias Gram-Negativas , Pseudomonas aeruginosa , Serratia marcescens/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteus mirabilis/metabolismo , Proteínas de Bactérias/metabolismo
7.
Microorganisms ; 10(10)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36296252

RESUMO

The targeting of bacterial virulence is proposed as a promising approach to overcoming the bacterial resistance development to antibiotics. Salmonella enterica is one of the most important gut pathogens that cause a wide diversity of local and systemic illnesses. The Salmonella virulence is controlled by interplayed systems namely Quorum sensing (QS) and type three secretion system (T3SS). Furthermore, the Salmonella spy on the host cell via sensing the adrenergic hormones enhancing its virulence. The current study explores the possible anti-virulence activities of ß-adrenoreceptor blocker atenolol against S. enterica serovar Typhimurium in vitro, in silico, and in vivo. The present findings revealed a significant atenolol ability to diminish the S. typhimurium biofilm formation, invasion into HeLa cells, and intracellular replication inside macrophages. Atenolol significantly downregulated the encoding genes of the T3SS-type II, QS receptor Lux analogs sdiA, and norepinephrine membranal sensors qseC and qseE. Moreover, atenolol significantly protected mice against S. typhimurium. For testing the possible mechanisms for atenolol anti-virulence activities, an in silico molecular docking study was conducted to assess the atenolol binding ability to QS receptor SdiA and norepinephrine membranal sensors QseC. Atenolol showed the ability to compete on the S. typhimurium targets. In conclusion, atenolol is a promising anti-virulence candidate to alleviate the S. typhimurium pathogenesis by targeting its QS and T3SS systems besides diminishing the eavesdropping on the host cells.

8.
Biology (Basel) ; 11(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36138828

RESUMO

Quorum sensing (QS) controls the production of several bacterial virulence factors. There is accumulative evidence to support that targeting QS can ensure a significant diminishing of bacterial virulence. Lessening bacterial virulence has been approved as an efficient strategy to overcome the development of antimicrobial resistance. The current study aimed to assess the anti-QS and anti-virulence activities of α-adrenoreceptor prazosin against three virulent Gram-negative bacteria Pseudomonades aeruginosa, Proteus mirabilis, and Serratia marcescens. The evaluation of anti-QS was carried out on a series of in vitro experiments, while the anti-virulence activities of prazosin were tested in an in vivo animal model. The prazosin anti-QS activity was assessed on the production of QS-controlled Chromobacterium violaceum pigment violacein and the expression of QS-encoding genes in P. aeruginosa. In vitro tests were performed to evaluate the prazosin effects on biofilm formation and production of extracellular enzymes by P. aeruginosa, P. mirabilis, and S. marcescens. A protective assay was conducted to evaluate the in vivo anti-virulence activity of prazosin against P. aeruginosa, P. mirabilis, and S. marcescens. Moreover, precise in silico molecular docking was performed to test the prazosin affinity to different QS receptors. The results revealed that prazosin significantly decreased the production of violacein and the virulent enzymes, protease and hemolysins, in the tested strains. Prazosin significantly diminished biofilm formation in vitro and bacterial virulence in vivo. The prazosin anti-QS activity was proven by its downregulation of QS-encoding genes and its obvious binding affinity to QS receptors. In conclusion, prazosin could be considered an efficient anti-virulence agent to be used as an adjuvant to antibiotics, however, it requires further pharmacological evaluations prior to clinical application.

9.
Eur J Med Chem ; 240: 114569, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35834906

RESUMO

One in every eight women will be diagnosed with breast cancer during their lifetime and approximately 70% of all patients are oestrogen receptor (ER) positive depending upon oestrogen for their growth accounting for third generation aromatase (CYP19A1) inhibitors being the mainstay in the treatment of ER-positive breast cancer. Despite the success of current aromatase inhibitors, acquired resistance occurs after prolonged therapy. Although the precise mechanisms of resistance are not known, lack of cross resistance among aromatase inhibitors drives the need for a newer generation of inhibitors to overcome this resistance alongside minimising toxicity and adverse effects. Novel triazole-based inhibitors were designed based on previously published parent compound 5a, making use of the now available crystal structure of CYP19A1 (PDB 3S79), to make modifications at specific sites to explore the potential of dual binding at both the active site and the access channel. Modifications included adding long chain substituents e.g. but-2-ynyloxy and pent-2-ynyloxy at different positions including the most active compound 13h with IC50 value in the low picomolar range (0.09 nM). Aromatase inhibition results paired with molecular dynamics studies provided a clear structure activity relationship and favourable dual binding mode was verified. Toxicity assays and CYP selectivity profile studies for some example compounds were performed to assess the safety profile of the prepared inhibitors providing the basis for the 4th generation nonsteroidal aromatase inhibitors.


Assuntos
Inibidores da Aromatase , Neoplasias da Mama , Aromatase/metabolismo , Inibidores da Aromatase/química , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/metabolismo , Feminino , Humanos , Receptores de Estrogênio , Triazóis/farmacologia
10.
J Enzyme Inhib Med Chem ; 31(6): 1694-7, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26899668

RESUMO

The synthesis of a series of benzimidazole-N-benzylpropan-1-amines and adenine-N-benzylpropan-1-amines is described. Subsequent evaluation against two strains of the anaerobic bacterium Clostridium difficile was performed with three amine derivatives displaying MIC values of 16 µg/mL. Molecular docking studies of the described amines determined that the amines interact within two active site pockets of C. difficile methionyl tRNA synthetase with methoxy substituents in the benzyl ring and an adenine biaryl moiety resulting in optimal binding interactions.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Clostridioides difficile/efeitos dos fármacos , Metionina tRNA Ligase/efeitos dos fármacos , Propano/análogos & derivados , Antibacterianos/química , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Propano/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA