Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 13(6): e12459, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38868956

RESUMO

Isolation of neuron-derived extracellular vesicles (NDEVs) with L1 Cell Adhesion Molecule (L1CAM)-specific antibodies has been widely used to identify blood biomarkers of CNS disorders. However, full methodological validation requires demonstration of L1CAM in individual NDEVs and lower levels or absence of L1CAM in individual EVs from other cells. Here, we used multiple single-EV techniques to establish the neuronal origin and determine the abundance of L1CAM-positive EVs in human blood. L1CAM epitopes of the ectodomain are shown to be co-expressed on single-EVs with the neuronal proteins ß-III-tubulin, GAP43, and VAMP2, the levels of which increase in parallel with the enrichment of L1CAM-positive EVs. Levels of L1CAM-positive EVs carrying the neuronal proteins VAMP2 and ß-III-tubulin range from 30% to 63%, in contrast to 0.8%-3.9% of L1CAM-negative EVs. Plasma fluid-phase L1CAM does not bind to single-EVs. Our findings support the use of L1CAM as a target for isolating plasma NDEVs and leveraging their cargo to identify biomarkers reflecting neuronal function.


Assuntos
Biomarcadores , Vesículas Extracelulares , Molécula L1 de Adesão de Célula Nervosa , Neurônios , Proteína 2 Associada à Membrana da Vesícula , Humanos , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Vesículas Extracelulares/metabolismo , Biomarcadores/metabolismo , Biomarcadores/sangue , Neurônios/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Tubulina (Proteína)/metabolismo
2.
Extracell Vesicles Circ Nucl Acids ; 4(1): 133-150, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37842184

RESUMO

Aims: Blood biomarkers can improve drug development for Alzheimer's disease (AD) and its treatment. Neuron-derived extracellular vesicles (NDEVs) in plasma offer a minimally invasive platform for developing novel biomarkers that may be used to monitor the diverse pathogenic processes involved in AD. However, NDEVs comprise only a minor fraction of circulating extracellular vesicles (EVs). Most published studies have leveraged the L1 cell adhesion molecule (L1CAM) for NDEV immunocapture. We aimed to develop and optimize an alternative, highly specific immunoaffinity method to enrich blood NDEVs for biomarker development. Methods: After screening multiple neuronal antigens, we achieved NDEV capture with high affinity and specificity using antibodies against Growth-Associated Protein (GAP) 43 and Neuroligin 3 (NLGN3). The EV identity of the captured material was confirmed by electron microscopy, western blotting, and proteomics. The specificity for neuronal origin was demonstrated by showing enrichment for neuronal markers (proteins, mRNA) and recovery of spiked neuronal EVs. We performed NDEV isolation retrospectively from plasma samples from two cohorts of early AD patients (N = 19 and N = 40) and controls (N = 20 and N = 19) and measured p181-Tau, amyloid-beta (Aß) 42, brain-derived neurotrophic factor (BDNF), precursor brain-derived neurotrophic factor (proBDNF), glutamate receptor 2 (GluR2), postsynaptic density protein (PSD) 95, GAP43, and syntaxin-1. Results: p181-Tau, Aß42, and NRGN were elevated in AD samples, whereas proBDNF, GluR2, PSD95, GAP43, and Syntaxin-1 were reduced. Differences for p181-Tau, proBDNF, and GluR2 survived multiple-comparison correction and were correlated with cognitive scores. A model incorporating biomarkers correctly classified 94.7% of AD participants and 61.5% of control participants. The observed differences in NDEVs-associated biomarkers are consistent with previous findings. Conclusion: NDEV isolation by GAP43 and NLGN3 immunocapture offers a robust novel platform for biomarker development in AD, suitable for large-scale validation.

3.
World J Biol Psychiatry ; 24(7): 603-613, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994633

RESUMO

BACKGROUND: Rates of Cannabis Use Disorder (CUD) are highest amongst young adults. Paucity of brain tissue samples limits the ability to examine the molecular basis of cannabis related neuropathology. Proteomic studies of neuron-derived extracellular vesicles (NDEs) isolated from the biofluids may reveal markers of neuropathology in CUD. METHODS: NDEs were extracted using ExoSORT, an immunoaffinity method to enrich NDEs from plasma samples from patients with young onset CUD and matched controls. Differential proteomic profiles were explored with Label Free Quantification (LFQ) mass spectrometry. Selected proteins were validated using orthogonal methods. RESULTS: A total of 231 (±10) proteins were identified in NDE preparations from CUD and controls of which 28 were differentially abundant between groups. The difference in abundance of properdin (CFP gene) was statistically significant. SHANK1 (SHANK1 gene), an adapter protein at the post-synaptic density, was nominally depleted in the CUD NDE preparations. CONCLUSION: In this pilot study, we noted a decrease in SHANK1 protein, involved in the structural and functional integrity of glutamatergic post-synapse, a potential peripheral signature of CUD neuropathology. The study shows that LFQ mass spectrometry proteomic analysis of NDEs derived from plasma may yield important insights into the synaptic pathology associated with CUD.


Assuntos
Vesículas Extracelulares , Abuso de Maconha , Transtornos Relacionados ao Uso de Substâncias , Adulto Jovem , Humanos , Projetos Piloto , Proteômica
4.
Artigo em Inglês | MEDLINE | ID: mdl-36106817

RESUMO

OBJECTIVE: This study aimed to evaluate the safety and tolerability of a fixed-dose co-formulation of ciprofloxacin and celecoxib (PrimeC) in patients with amyotrophic lateral sclerosis (ALS), and to examine its effects on disease progression and ALS-related biomarkers. METHODS: In this proof of concept, open-label, phase IIa study of PrimeC in 15 patients with ALS, participants were administered PrimeC thrice daily for 12 months. The primary endpoints were safety and tolerability. Exploratory endpoints included disease progression outcomes such as forced vital capacity, revised ALS functional rating scale, and effect on algorithm-predicted survival. In addition, indications of a biological effect were assessed by selected biomarker analyses, including TDP-43 and LC3 levels in neuron-derived exosomes (NDEs), and serum neurofilaments. RESULTS: Four participants experienced adverse events (AEs) related to the study drug. None of these AEs were unexpected, and most were mild or moderate (69%). Additionally, no serious AEs were related to the study drug. One participant tested positive for COVID-19 and recovered without complications, and no other abnormal laboratory investigations were found. Participants' survival compared to their predictions showed no safety concerns. Biomarker analyses demonstrated significant changes associated with PrimeC in neural-derived exosomal TDP-43 levels and levels of LC3, a key autophagy marker. INTERPRETATION: This study supports the safety and tolerability of PrimeC in ALS. Biomarker analyses suggest early evidence of a biological effect. A placebo-controlled trial is required to disentangle the biomarker results from natural progression and to evaluate the efficacy of PrimeC for the treatment of ALS. Summary for social media if publishedTwitter handles: @NeurosenseT, @ShiranZimri•What is the current knowledge on the topic? ALS is a severe neurodegenerative disease, causing death within 2-5 years from diagnosis. To date there is no effective treatment to halt or significantly delay disease progression.•What question did this study address? This study assessed the safety, tolerability and exploratory efficacy of PrimeC, a fixed dose co-formulation of ciprofloxacin and celecoxib in the ALS population.•What does this study add to our knowledge? This study supports the safety and tolerability of PrimeC in ALS, and exploratory biomarker analyses suggest early insight for disease related-alteration.•How might this potentially impact the practice of neurology? These results set the stage for a larger, placebo-controlled study to examine the efficacy of PrimeC, with the potential to become a new drug candidate for ALS.


Assuntos
Esclerose Lateral Amiotrófica , COVID-19 , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/tratamento farmacológico , Biomarcadores , Celecoxib/uso terapêutico , Progressão da Doença , Proteínas de Ligação a DNA , Método Duplo-Cego , Ciprofloxacina/uso terapêutico
5.
EMBO J ; 40(20): e107158, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34515347

RESUMO

Nucleolin is a multifunctional RNA Binding Protein (RBP) with diverse subcellular localizations, including the nucleolus in all eukaryotic cells, the plasma membrane in tumor cells, and the axon in neurons. Here we show that the glycine arginine rich (GAR) domain of nucleolin drives subcellular localization via protein-protein interactions with a kinesin light chain. In addition, GAR sequences mediate plasma membrane interactions of nucleolin. Both these modalities are in addition to the already reported involvement of the GAR domain in liquid-liquid phase separation in the nucleolus. Nucleolin transport to axons requires the GAR domain, and heterozygous GAR deletion mice reveal reduced axonal localization of nucleolin cargo mRNAs and enhanced sensory neuron growth. Thus, the GAR domain governs axonal transport of a growth controlling RNA-RBP complex in neurons, and is a versatile localization determinant for different subcellular compartments. Localization determination by GAR domains may explain why GAR mutants in diverse RBPs are associated with neurodegenerative disease.


Assuntos
Nucléolo Celular/metabolismo , Gânglios Espinais/metabolismo , Cinesinas/metabolismo , Neurônios/metabolismo , Fosfoproteínas/química , Proteínas de Ligação a RNA/química , Nervo Isquiático/metabolismo , Sequência de Aminoácidos , Animais , Transporte Axonal/genética , Linhagem Celular Tumoral , Nucléolo Celular/ultraestrutura , Gânglios Espinais/citologia , Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Cinesinas/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação , Neurônios/citologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Cultura Primária de Células , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Nervo Isquiático/citologia , Nucleolina
6.
Curr Opin Neurobiol ; 69: 241-246, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34171618

RESUMO

Nerve axons are shaped similar to long electric wires to quickly transmit information from one end of the body to the other. To remain healthy and functional, axons depend on a wide range of cellular cargos to be transported from the neuronal cell body to its distal processes. Because of the extended distance, a sophisticated and well-organized trafficking network is required to move cargos up and down the axon. Besides motor proteins driving cargo transport, recent data revealed that subcellular membrane specializations, including the axon initial segment at the beginning of the axon and the membrane-associated periodic skeleton, which extends throughout the axonal length, are important spatial regulators of cargo traffic. In addition, tubulin modifications and microtubule-associated proteins present along the axonal cytoskeleton have been proposed to bias cargo movements. Here, we discuss the recent advances in understanding these multiple layers of regulatory mechanisms controlling axonal transport.


Assuntos
Transporte Axonal , Axônios , Axônios/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo
8.
J Cell Biol ; 220(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33852719

RESUMO

COPII and COPI mediate the formation of membrane vesicles translocating in opposite directions within the secretory pathway. Live-cell and electron microscopy revealed a novel mode of function for COPII during cargo export from the ER. COPII is recruited to membranes defining the boundary between the ER and ER exit sites, facilitating selective cargo concentration. Using direct observation of living cells, we monitored cargo selection processes, accumulation, and fission of COPII-free ERES membranes. CRISPR/Cas12a tagging, the RUSH system, and pharmaceutical and genetic perturbations of ER-Golgi transport demonstrated that the COPII coat remains bound to the ER-ERES boundary during protein export. Manipulation of the cargo-binding domain in COPII Sec24B prohibits cargo accumulation in ERES. These findings suggest a role for COPII in selecting and concentrating exported cargo rather than coating Golgi-bound carriers. These findings transform our understanding of coat proteins' role in ER-to-Golgi transport.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Células HeLa , Humanos , Transporte Proteico
9.
Cells ; 10(5)2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922642

RESUMO

Circulating neuronal extracellular vesicles (NEVs) of Alzheimer's disease (AD) patients show high Tau and ß-amyloid (Aß) levels, whereas their astrocytic EVs (AEVs) contain high complement levels. To validate EV proteins as AD biomarkers, we immunocaptured NEVs and AEVs from plasma collected from fifteen wild type (WT), four 2xTg-AD, nine 5xFAD, and fifteen 3xTg-AD mice and assessed biomarker relationships with brain tissue levels. NEVs from 3xTg-AD mice had higher total Tau (p = 0.03) and p181-Tau (p = 0.0004) compared to WT mice. There were moderately strong correlations between biomarkers in NEVs and cerebral cortex and hippocampus (total Tau: cortex, r = 0.4, p = 0.009; p181-Tau: cortex, r = 0.7, p < 0.0001; hippocampus, r = 0.6, p < 0.0001). NEVs from 5xFAD compared to other mice had higher Aß42 (p < 0.005). NEV Aß42 had moderately strong correlations with Aß42 in cortex (r = 0.6, p = 0.001) and hippocampus (r = 0.7, p < 0.0001). AEV C1q was elevated in 3xTg-AD compared to WT mice (p = 0.005); AEV C1q had moderate-strong correlations with C1q in cortex (r = 0.9, p < 0.0001) and hippocampus (r = 0.7, p < 0.0001). Biomarkers in circulating NEVs and AEVs reflect their brain levels across multiple AD mouse models supporting their potential use as a "liquid biopsy" for neurological disorders.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Biomarcadores/sangue , Encéfalo/patologia , Vesículas Extracelulares/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Proteínas tau/genética
10.
Dev Cell ; 56(4): 494-508.e7, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33571451

RESUMO

Neurons depend on proper localization of neurotrophic receptors in their distal processes for their function. The Trk family of neurotrophin receptors controls neuronal survival, differentiation, and remodeling and are well known to function as retrograde signal carriers transported from the distal axon toward the cell body. However, the mechanism driving anterograde trafficking of Trk receptors into the axon is not well established. We used microfluidic compartmental devices and inducible secretion assay to systematically investigate the retrograde and anterograde trafficking routes of TrkB receptor along the axon in rat hippocampal neurons. We show that newly synthesized TrkB receptors traffic through the secretory pathway and are directly delivered into axon. We found that these TrkB carriers associate and are regulated by Rab6. Furthermore, the combined activity of kinesin-1 and kinesin-3 is needed for the formation of axon-bound TrkB secretory carriers and their effective entry and processive anterograde transport beyond the proximal axon.


Assuntos
Axônios/metabolismo , Cinesinas/metabolismo , Receptor trkB/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Transporte Axonal , Endocitose , Células HEK293 , Humanos , Ratos Wistar , Via Secretória
11.
Aging Cell ; 20(1): e13283, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33355987

RESUMO

The mitochondrial free radical theory of aging suggests that accumulating oxidative damage to mitochondria and mitochondrial DNA (mtDNA) plays a central role in aging. Circulating cell-free mtDNA (ccf-mtDNA) isolated from blood may be a biomarker of disease. Extracellular vesicles (EVs) are small (30-400 nm), lipid-bound vesicles capable of shuttling proteins, nucleic acids, and lipids as part of intercellular communication systems. Here, we report that a portion of ccf-mtDNA in plasma is encapsulated in EVs. To address whether EV mtDNA levels change with human age, we analyzed mtDNA in EVs from individuals aged 30-64 years cross-sectionally and longitudinally. EV mtDNA levels decreased with age. Furthermore, the maximal mitochondrial respiration of cultured cells was differentially affected by EVs from old and young donors. Our results suggest that plasma mtDNA is present in EVs, that the level of EV-derived mtDNA is associated with age, and that EVs affect mitochondrial energetics in an EV age-dependent manner.


Assuntos
DNA Mitocondrial/genética , Vesículas Extracelulares/metabolismo , Adulto , Envelhecimento , Humanos , Pessoa de Meia-Idade
12.
JAMA Neurol ; 76(11): 1340-1351, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31305918

RESUMO

IMPORTANCE: Blood biomarkers able to diagnose Alzheimer disease (AD) at the preclinical stage would enable trial enrollment when the disease is potentially reversible. Plasma neuronal-enriched extracellular vesicles (nEVs) of patients with AD were reported to exhibit elevated levels of phosphorylated (p) tau, Aß42, and phosphorylated insulin receptor substrate 1 (IRS-1). OBJECTIVE: To validate nEV biomarkers as AD predictors. DESIGN, SETTING, PARTICIPANTS: This case-control study included longitudinal plasma samples from cognitively normal participants in the Baltimore Longitudinal Study of Aging (BLSA) cohort who developed AD up to January 2015 and age- and sex-matched controls who remained cognitively normal over a similar length of follow-up. Repeated samples were blindly analyzed over 1 year from participants with clinical AD and controls from the Johns Hopkins Alzheimer Disease Research Center (JHADRC). Data were collected from September 2016 to January 2018. Analyses were conducted in March 2019. MAIN OUTCOMES AND MEASURES: Neuronal-enriched extracellular vesicles were immunoprecipitated; tau, Aß42, and IRS-1 biomarkers were quantified by immunoassays; and nEV concentration and diameter were determined by nanoparticle tracking analysis. Levels and longitudinal trajectories of nEV biomarkers between participants with future AD and control participants were compared. RESULTS: Overall, 887 longitudinal plasma samples from 128 BLSA participants who eventually developed AD and 222 age and sex-matched controls who remained cognitively normal were analyzed. Participants were followed up (from earliest sample to AD symptom onset) for a mean (SD) of 3.5 (2.31) years (range, 0-9.73 years). Overall, 161 participants were included in the training set, and 80 were in the test set. Participants in the BLSA cohort with future AD (mean [SD] age, 79.09 [7.02] years; 68 women [53.13%]) had longitudinally higher p-tau181, p-tau231, pSer312-IRS-1, pY-IRS-1, and nEV diameter than controls (mean [SD] age, 76.2 [7.36] years; 110 women [50.45%]) but had similar Aß42, total tau, TSG101, and nEV concentration. In the training BLSA set, a model combining preclinical longitudinal data achieved 89.6% area under curve (AUC), 81.8% sensitivity, and 85.8% specificity for predicting AD. The model was validated in the test BLSA set (80% AUC, 55.6% sensitivity, 88.7% specificity). Preclinical levels of nEV biomarkers were associated with cognitive performance. In addition, 128 repeated samples over 1 year from 64 JHADRC participants with clinical AD and controls were analyzed. In the JHADRC cohort (35 participants with AD: mean [SD] age, 74.03 [8.73] years; 18 women [51.43%] and 29 controls: mean [SD] age, 72.14 [7.86] years; 23 women [79.31%]), nEV biomarkers achieved discrimination with 98.9% AUC, 100% sensitivity, and 94.7% specificity in the training set and 76.7% AUC, 91.7% sensitivity, and 60% specificity in the test set. CONCLUSIONS AND RELEVANCE: We validated nEV biomarker candidates and further demonstrated that their preclinical longitudinal trajectories can predict AD diagnosis. These findings motivate further development of nEV biomarkers toward a clinical blood test for AD.

13.
iScience ; 13: 318-327, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30878878

RESUMO

The establishment of neuronal polarity is driven by cytoskeletal remodeling that stabilizes and promotes the growth of a single axon from one of the multiple neurites. The importance of the local microtubule stabilization in this process has been revealed however, the external signals initiating the cytoskeletal rearrangements are not completely understood. In this study, we show that local activation of the canonical Wnt pathway regulates neuronal polarity and axonal outgrowth. We found that in the early stages of neuronal polarization, Wnt3a accumulates in one of the neurites of unpolarized cells and thereby could determine axon positioning. Subsequently, Wnt3a localizes to the growing axon, where it activates the canonical Wnt pathway and controls axon positioning and axonal length. We propose a model in which Wnt3a regulates the formation and growth of the axon by activating local intracellular signaling events leading to microtubule remodeling.

14.
Sci Signal ; 11(529)2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739881

RESUMO

Tropomyosin-related tyrosine kinase B (TrkB) is the receptor for brain-derived neurotrophic factor (BDNF) and provides critical signaling that supports the development and function of the mammalian nervous system. Like other receptor tyrosine kinases (RTKs), TrkB is thought to signal as a dimer. Using cell imaging and biochemical assays, we found that TrkB acted as a monomeric receptor at the plasma membrane regardless of its binding to BDNF and initial activation. Dimerization occurred only after the internalization and accumulation of TrkB monomers within BDNF-containing endosomes. We further showed that dynamin-mediated endocytosis of TrkB-BDNF was required for the effective activation of the kinase AKT but not of the kinase ERK1/2. Thus, we report a previously uncharacterized mode of monomeric signaling for an RTK and a specific role for the endosome in TrkB homodimerization.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Membrana Celular/metabolismo , Dinaminas/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Multimerização Proteica , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Animais , Endocitose , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
15.
Diabetes ; 67(11): 2377-2388, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29720498

RESUMO

Type 2 diabetes is a chronic age-associated degenerative metabolic disease that reflects relative insulin deficiency and resistance. Extracellular vesicles (EVs) (exosomes, microvesicles, and apoptotic bodies) are small (30-400 nm) lipid-bound vesicles capable of shuttling functional proteins, nucleic acids, and lipids as part of intercellular communication systems. Recent studies in mouse models and in cell culture suggest that EVs may modulate insulin signaling. Here, we designed cross-sectional and longitudinal cohorts of euglycemic participants and participants with prediabetes or diabetes. Individuals with diabetes had significantly higher levels of EVs in their circulation than euglycemic control participants. Using a cell-specific EV assay, we identified that levels of erythrocyte-derived EVs are higher with diabetes. We found that insulin resistance increases EV secretion. Furthermore, the levels of insulin signaling proteins were altered in EVs from individuals with high levels of insulin resistance and ß-cell dysfunction. Moreover, EVs from individuals with diabetes were preferentially internalized by circulating leukocytes. Cytokine levels in the media and in EVs were higher from monocytes incubated with diabetic EVs. Microarray of these leukocytes revealed altered gene expression pathways related to cell survival, oxidative stress, and immune function. Collectively, these results suggest that insulin resistance increases the secretion of EVs, which are preferentially internalized by leukocytes, and alters leukocyte function.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Vesículas Extracelulares/metabolismo , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Adulto , Idoso , Citocinas/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
16.
Clin Cancer Res ; 24(1): 181-188, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29051321

RESUMO

Purpose: Blood-based liquid biopsies offer easy access to genomic material for molecular diagnostics in cancer. Commonly used cell-free DNA (cfDNA) originates from dying cells. Exosomal nucleic acids (exoNAs) originate from living cells, which can better reflect underlying cancer biology.Experimental Design: Next-generation sequencing (NGS) was used to test exoNA, and droplet digital PCR (ddPCR) and BEAMing PCR were used to test cfDNA for BRAFV600, KRASG12/G13, and EGFRexon19del/L858R mutations in 43 patients with progressing advanced cancers. Results were compared with clinical testing of archival tumor tissue and clinical outcomes.Results: Forty-one patients had BRAF, KRAS, or EGFR mutations in tumor tissue. These mutations were detected by NGS in 95% of plasma exoNA samples, by ddPCR in 92% of cfDNA samples, and by BEAMing in 97% cfDNA samples. NGS of exoNA did not detect any mutations not present in tumor, whereas ddPCR and BEAMing detected one and two such mutations, respectively. Compared with patients with high exoNA mutation allelic frequency (MAF), patients with low MAF had longer median survival (11.8 vs. 5.9 months; P = 0.006) and time to treatment failure (7.4 vs. 2.3 months; P = 0.009). A low amount of exoNA was associated with partial response and stable disease ≥6 months (P = 0.006).Conclusions: NGS of plasma exoNA for common BRAF, KRAS, and EGFR mutations has high sensitivity compared with clinical testing of archival tumor and testing of plasma cfDNA. Low exoNA MAF is an independent prognostic factor for longer survival. Clin Cancer Res; 24(1); 181-8. ©2017 AACR.


Assuntos
Biomarcadores Tumorais , Ácidos Nucleicos Livres , Exossomos , Biópsia Líquida , Neoplasias/sangue , Adulto , Idoso , Receptores ErbB/sangue , Receptores ErbB/genética , Feminino , Testes Genéticos , Humanos , Biópsia Líquida/métodos , Masculino , Pessoa de Meia-Idade , Mutação , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias/diagnóstico , Neoplasias/mortalidade , Avaliação de Resultados da Assistência ao Paciente , Proteínas Proto-Oncogênicas B-raf/sangue , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/sangue , Proteínas Proto-Oncogênicas p21(ras)/genética , Análise de Sobrevida
17.
Neurobiol Aging ; 61: 52-65, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29035751

RESUMO

Parkinson's disease (PD) is characterized by accumulations of toxic α-synuclein aggregates in vulnerable neuronal populations in the brainstem, midbrain, and cerebral cortex. Recent findings suggest that α-synuclein pathology can be propagated transneuronally, but the underlying molecular mechanisms are unknown. Advances in the genetics of rare early-onset familial PD indicate that increased production and/or reduced autophagic clearance of α-synuclein can cause PD. The cause of the most common late-onset PD is unclear, but may involve metabolic compromise and oxidative stress upstream of α-synuclein accumulation. As evidence, the lipid peroxidation product 4-hydroxynonenal (HNE) is elevated in the brain during normal aging and moreso in brain regions afflicted with α-synuclein pathology. Here, we report that HNE increases aggregation of endogenous α-synuclein in primary neurons and triggers the secretion of extracellular vesicles (EVs) containing cytotoxic oligomeric α-synuclein species. EVs released from HNE-treated neurons are internalized by healthy neurons which as a consequence degenerate. Levels of endogenously generated HNE are elevated in cultured cells overexpressing human α-synuclein, and EVs released from those cells are toxic to neurons. The EV-associated α-synuclein is located both inside the vesicles and on their surface, where it plays a role in EV internalization by neurons. On internalization, EVs harboring pathogenic α-synuclein are transported both anterogradely and retrogradely within axons. Focal injection of EVs containing α-synuclein into the striatum of wild-type mice results in spread of synuclein pathology to anatomically connected brain regions. Our findings suggest a scenario for late-onset PD in which lipid peroxidation promotes intracellular accumulation and then extrusion of EVs containing toxic α-synuclein species; the EVs are then internalized by adjacent neurons, so propagating the neurodegenerative process.


Assuntos
Aldeídos/metabolismo , Vesículas Extracelulares/metabolismo , Peroxidação de Lipídeos , Doença de Parkinson/etiologia , alfa-Sinucleína/metabolismo , Animais , Axônios/metabolismo , Transporte Biológico , Encéfalo/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Camundongos Transgênicos , Neurônios/metabolismo , Estresse Oxidativo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , alfa-Sinucleína/fisiologia
18.
Aging Cell ; 16(6): 1430-1433, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28921841

RESUMO

Obesity, metabolic syndrome, and hyperleptinemia are associated with aging and age-associated diseases including prostate cancer. One experimental approach to inhibit tumor growth is to reduce dietary protein intake and hence levels of circulating amino acids. Dietary protein restriction (PR) increases insulin sensitivity and suppresses prostate cancer cell tumor growth in animal models, providing a rationale for clinical trials. We sought to demonstrate that biomarkers derived from plasma extracellular vesicles (EVs) reflect systemic leptin and insulin signaling and respond to dietary interventions. We studied plasma samples from men with prostate cancer awaiting prostatectomy who participated in a randomized trial of one month of PR or control diet. We found increased levels of leptin receptor in the PR group in total plasma EVs and in a subpopulation of plasma EVs expressing the neuronal marker L1CAM. Protein restriction also shifted the phosphorylation status of the insulin receptor signal transducer protein IRS1 in L1CAM+ EVs in a manner suggestive of improved insulin sensitivity. Dietary PR modifies indicators of leptin and insulin signaling in circulating EVs. These findings are consistent with improved insulin and leptin sensitivity in response to PR and open a new window for following physiologic responses to dietary interventions in humans.


Assuntos
Dieta com Restrição de Proteínas , Vesículas Extracelulares/metabolismo , Insulina/sangue , Leptina/sangue , Neoplasias da Próstata/sangue , Restrição Calórica , Metabolismo Energético , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/dietoterapia , Neoplasias da Próstata/patologia
19.
Exp Gerontol ; 98: 209-216, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28843509

RESUMO

BACKGROUND: Brain-derived neurotrophic factor (BDNF) is produced by cleavage of proBDNF, and BDNF and proBDNF may play antagonistic roles in nervous system development, learning, memory and neuronal stress resistance. BDNF and proBDNF are present in blood, but the origin and relative contributions of soluble and extracellular vesicle (EV)-associated levels are unknown. METHODS: In this study we used validated immunoassays to measure proBDNF and BDNF levels in plasma, total plasma EVs and a subpopulation of EVs enriched for neuronal origin (expressing the neuronal marker L1CAM) in 150 Baltimore Longitudinal Study of Aging participants with and without decline in walking speed (reflecting aging-associated motor decline). RESULTS: Levels of BDNF and proBDNF were highest in L1CAM+ EVs. Participants with walking speed decline had higher levels of proBDNF in L1CAM+ EVs compared to non-decliners, but no differences in proBDNF levels in plasma and total EV. CONCLUSIONS: Our findings suggest that levels of proBDNF and BDNF in circulating L1CAM+ EVs might be used as biomarkers for conditions involving altered BDNF signaling.


Assuntos
Envelhecimento/sangue , Fator Neurotrófico Derivado do Encéfalo/sangue , Vesículas Extracelulares/metabolismo , Precursores de Proteínas/sangue , Velocidade de Caminhada , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Ensaio de Imunoadsorção Enzimática , Teste de Esforço , Feminino , Humanos , Masculino , Molécula L1 de Adesão de Célula Nervosa/sangue , Fatores de Tempo , Regulação para Cima
20.
Front Neurosci ; 11: 278, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588440

RESUMO

Our team has been a pioneer in harvesting extracellular vesicles (EVs) enriched for neuronal origin from peripheral blood and using them as a biomarker discovery platform for neurological disorders. This methodology has demonstrated excellent diagnostic and predictive performance for Alzheimer's and other neurodegenerative diseases in multiple studies, providing a strong proof of concept for this approach. Here, we describe our methodology in detail and offer further evidence that isolated EVs are enriched for neuronal origin. In addition, we present evidence that EVs enriched for neuronal origin represent a more sensitive and accurate base for biomarkers than plasma, serum, or non-enriched total plasma EVs. Finally, we proceed to investigate the protein content of EVs enriched for neuronal origin and compare it with other relevant enriched and non-enriched populations of plasma EVs. Neuronal-origin enriched plasma EVs contain higher levels of signaling molecules of great interest for cellular metabolism, survival, and repair, which may be useful as biomarkers and to follow response to therapeutic interventions in a mechanism-specific manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA