Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 23(2): 767-781, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27474896

RESUMO

Understanding uncertainties in land cover projections is critical to investigating land-based climate mitigation policies, assessing the potential of climate adaptation strategies and quantifying the impacts of land cover change on the climate system. Here, we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro-economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover.


Assuntos
Mudança Climática , Incerteza , Clima , Planeta Terra , Previsões , Plantas
2.
Sci Total Environ ; 565: 427-439, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27179681

RESUMO

This method development paper outlines an integrative stochastic dynamic methodology (StDM) framework to anticipate land use (LU) change effects on the ecological status of monitored and non-monitored lotic surface waters under the Water Framework Directive (WFD). Tested in the Alto Minho River Basin District in North West Portugal, the model is an innovative step towards developing a decision-making and planning tool to assess the influence impacts such as LU change and climate change on these complex systems. Comprising a series of sequential steps, a Generalized Linear Model based, competing model Multi Model Inference (MMI) approach was used for parameter estimation to identify principal land use types (distal factors) driving change in biological and physicochemical support elements (proximal factors) in monitored water bodies. The framework integrated MMI constants and coefficients of selected LU categories in the StDM simulations and spatial projections to simulate the ecological status of monitored and non-monitored lotic waterbodies in the test area under 2 scenarios of (1) LU intensification and (2) LU extensification. A total of 100 simulations were run for a 50year period for each scenario. Spatially dynamic projections of WFD metrics were obtained, taking into account the occurrence of stochastic wildfire events which typically occur in the study region and are exacerbated by LU change. A marked projected decline to "Moderate" ecological status for most waterbodies was detected under intensification but little change under extensification; only a few waterbodies fell to "moderate" status. The latter scenario describes the actual regional socio-economic situation of agricultural abandonment due to rural poverty, partly explaining the projected lack of change in ecological status. Based on the WFD "one out all out" criterion, projected downward shifts in ecological status were due to physicochemical support elements, namely increased phosphorus levels. Little or no change in status was driven by Intercalibrated Biological Quality Elements, indicating innate resilience and raising questions concerning uncertainty, the effect of pressures other than land use and metric redundancy and the WFD classification process.

3.
Glob Chang Biol ; 22(12): 3967-3983, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27135635

RESUMO

Model-based global projections of future land-use and land-cover (LULC) change are frequently used in environmental assessments to study the impact of LULC change on environmental services and to provide decision support for policy. These projections are characterized by a high uncertainty in terms of quantity and allocation of projected changes, which can severely impact the results of environmental assessments. In this study, we identify hotspots of uncertainty, based on 43 simulations from 11 global-scale LULC change models representing a wide range of assumptions of future biophysical and socioeconomic conditions. We attribute components of uncertainty to input data, model structure, scenario storyline and a residual term, based on a regression analysis and analysis of variance. From this diverse set of models and scenarios, we find that the uncertainty varies, depending on the region and the LULC type under consideration. Hotspots of uncertainty appear mainly at the edges of globally important biomes (e.g., boreal and tropical forests). Our results indicate that an important source of uncertainty in forest and pasture areas originates from different input data applied in the models. Cropland, in contrast, is more consistent among the starting conditions, while variation in the projections gradually increases over time due to diverse scenario assumptions and different modeling approaches. Comparisons at the grid cell level indicate that disagreement is mainly related to LULC type definitions and the individual model allocation schemes. We conclude that improving the quality and consistency of observational data utilized in the modeling process and improving the allocation mechanisms of LULC change models remain important challenges. Current LULC representation in environmental assessments might miss the uncertainty arising from the diversity of LULC change modeling approaches, and many studies ignore the uncertainty in LULC projections in assessments of LULC change impacts on climate, water resources or biodiversity.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Modelos Teóricos , Biodiversidade , Incerteza
4.
Environ Manage ; 57(6): 1304-18, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26920156

RESUMO

Cultural heritage landscapes are consistently perceived as landscapes of high value. However, these landscapes are very vulnerable to change. In China, rapid land use change, especially urbanization, has become one of the main challenges for the conservation of cultural heritage landscapes in rural areas. This paper focuses on the designated cultural villages in rural China by systematically analyzing the spatial distribution of the designated cultural landscape across the country and assessing the threats these traditional landscapes are facing under current and future urbanization and other land use pressures. Current designated cultural heritage landscapes in China are predominantly located in the rural and peri-urban regions of Central and South China and less frequently found in other regions. Especially in these regions risks to land use change are large. These risks are assessed based on observed recent land use change and land use model simulations for scenarios up to 2050. The risk assessment reveals that especially in Southeast China along the sea coast and near the cities along the Yangtze River, high pressures are expected on cultural heritage landscapes due to urbanization. At the same time, in Southwest China, especially in Yunnan and Guizhou provinces, high pressures due to other land use changes are expected, including land abandonment. This assessment gives direction and guidance toward the selection of the most threatened cultural villages for detailed investigation and additional protection measures.


Assuntos
Antropologia Cultural , Conservação dos Recursos Naturais/métodos , População Rural , Urbanização/tendências , China , Cidades , Análise Espacial
5.
Glob Chang Biol ; 21(3): 1236-48, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25205590

RESUMO

The world's population is growing and demand for food, feed, fiber, and fuel is increasing, placing greater demand on land and its resources for crop production. We review previously published estimates of global scale cropland availability, discuss the underlying assumptions that lead to differences between estimates, and illustrate the consequences of applying different estimates in model-based assessments of land-use change. The review estimates a range from 1552 to 5131 Mha, which includes 1550 Mha that is already cropland. Hence, the lowest estimates indicate that there is almost no room for cropland expansion, while the highest estimates indicate that cropland could potentially expand to over three times its current area. Differences can largely be attributed to institutional assumptions, i.e. which land covers/uses (e.g. forests or grasslands) are societally or governmentally allowed to convert to cropland, while there was little variation in biophysical assumptions. Estimates based on comparable assumptions showed a variation of up to 84%, which originated mainly from different underlying data sources. On the basis of this synthesis of the assumptions underlying these estimates, we constructed a high, a medium, and a low estimate of cropland availability that are representative of the range of estimates in the reviewed studies. We apply these estimates in a land-change model to illustrate the consequences on cropland expansion and intensification as well as deforestation. While uncertainty in cropland availability is hardly addressed in global land-use change assessments, the results indicate a large range of estimates with important consequences for model-based assessments.


Assuntos
Agricultura , Ecossistema , Modelos Teóricos , Estatística como Assunto/métodos , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA