Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 452: 131316, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003003

RESUMO

Oil spill incidents occur frequently and threaten ecosystems and human health. Solid-phase microextraction allows direct alkane extraction from environmental matrices to improve the limit of detection but is unable to measure alkanes on site. A biological-phase microextraction and biosensing (BPME-BS) device was developed by immobilising an alkane chemotactic Acinetobacter bioreporter ADPWH_alk in agarose gel to achieve online alkane quantification with the aid of a photomultiplier. The BPME-BS device had a high enrichment factor (average 7.07) and a satisfactory limit of detection (0.075 mg/L) for alkanes. The quantification range was 0.1-100 mg/L, comparable to a gas chromatography flame ionisation detector and better than a bioreporter without immobilisation. ADPWH_alk cells in the BPME-BS device maintained good sensitivity under a wide range of environmental conditions, including pH (4.0-9.0), temperature (20-40 °C), and salinity (0.0-3.0%), and its response remained stable within 30 days at 4 °C. In a 7-day continual measurement, the BPME-BS device successfully visualised the dynamic concentration of alkanes, and a 7-day field test successfully captured an oil spill event, helping in source apportionment and on-scene law enforcement. Our work proved that the BPME-BS device is a powerful tool for online alkane measurement, showing substantial potential for fast detection and rapid response to oil spills on site and in situ.


Assuntos
Alcanos , Ecossistema , Humanos , Alcanos/análise , Cromatografia Gasosa , Microextração em Fase Sólida , Receptores Proteína Tirosina Quinases
2.
Res Microbiol ; 167(9-10): 731-744, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27475037

RESUMO

Uncultivable microorganisms account for over 99% of all species on the planet, but their functions are yet not well characterized. Though many cultivable degraders for n-alkanes have been intensively investigated, the roles of functional n-alkane degraders remain hidden in the natural environment. This study introduces the novel magnetic nanoparticle-mediated isolation (MMI) technology in Nigerian soils and successfully separates functional microbes belonging to the families Oxalobacteraceae and Moraxellaceae, which are dominant and responsible for alkane metabolism in situ. The alkR-type n-alkane monooxygenase genes, instead of alkA- or alkP-type, were the key functional genes involved in the n-alkane degradation process. Further physiological investigation via a BIOLOG PM plate revealed some carbon (Tween 20, Tween 40 and Tween 80) and nitrogen (tyramine, l-glutamine and d-aspartic acid) sources promoting microbial respiration and n-alkane degradation. With further addition of promoter carbon or nitrogen sources, the separated functional alkane degraders significantly improved n-alkane biodegradation rates. This suggests that MMI is a promising technology for separating functional microbes from complex microbiota, with deeper insight into their ecological functions and influencing factors. The technique also broadens the application of the BIOLOG PM plate for physiological research on functional yet uncultivable microorganisms.


Assuntos
Alcanos/metabolismo , Técnicas Bacteriológicas/métodos , Moraxellaceae/isolamento & purificação , Oxalobacteraceae/isolamento & purificação , Petróleo/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Biotransformação , Carbono/metabolismo , Magnetismo , Metaboloma , Análise em Microsséries , Nanopartículas , Nitrogênio/metabolismo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA