RESUMO
Adipose thermogenesis has been actively investigated as a therapeutic target for improving metabolic dysfunction in obesity. However, its applicability to middle-aged and older populations, which bear the highest obesity prevalence in the United States (approximately 40%), remains uncertain due to age-related decline in thermogenic responses. In this study, we investigated the effects of chronic thermogenic stimulation using the ß3-adrenergic (AR) agonist CL316,243 (CL) on systemic metabolism and adipose function in aged (18-month-old) C57BL/6JN mice. Sustained ß3-AR treatment resulted in reduced fat mass, increased energy expenditure, increased fatty acid oxidation and mitochondrial activity in adipose depots, improved glucose homeostasis, and a favorable adipokine profile. At the cellular level, CL treatment increased uncoupling protein 1 (UCP1)-dependent thermogenesis in brown adipose tissue (BAT). However, in white adipose tissue (WAT) depots, CL treatment increased glycerol and lipid de novo lipogenesis (DNL) and turnover suggesting the activation of the futile substrate cycle of lipolysis and reesterification in a UCP1-independent manner. Increased lipid turnover was also associated with the simultaneous upregulation of proteins involved in glycerol metabolism, fatty acid oxidation, and reesterification in WAT. Further, a dose-dependent impact of CL treatment on inflammation was observed, particularly in subcutaneous WAT, suggesting a potential mismatch between fatty acid supply and oxidation. These findings indicate that chronic ß3-AR stimulation activates distinct cellular mechanisms that increase energy expenditure in BAT and WAT to improve systemic metabolism in aged mice. Considering that people lose BAT with aging, activation of futile lipid cycling in WAT presents a novel strategy for improving age-related metabolic dysfunction.
RESUMO
Adipose thermogenesis has been actively investigated as a therapeutic target for improving metabolic dysfunction in obesity. However, its applicability to middle-aged and older populations, which bear the highest obesity prevalence in the US (approximately 40%), remains uncertain due to age-related decline in thermogenic responses. In this study, we investigated the effects of chronic thermogenic stimulation using the ß3-adrenergic (AR) agonist CL316,243 (CL) on systemic metabolism and adipose function in aged (18-month-old) C57BL/6JN mice. Sustained ß3-AR treatment resulted in reduced fat mass, increased energy expenditure, increased fatty acid oxidation and mitochondrial activity in adipose depots, improved glucose homeostasis, and a favorable adipokine profile. At the cellular level, CL treatment increased uncoupling protein 1 (UCP1)-dependent thermogenesis in brown adipose tissue (BAT). However, in white adipose tissue (WAT) depots, CL treatment increased glycerol and lipid de novo lipogenesis (DNL) and turnover suggesting the activation of the futile substrate cycle of lipolysis and reesterification in a UCP1-independent manner. Increased lipid turnover was also associated with the simultaneous upregulation of proteins involved in glycerol metabolism, fatty acid oxidation, and reesterification in WAT. Further, a dose-dependent impact of CL treatment on inflammation was observed, particularly in subcutaneous WAT, suggesting a potential mismatch between fatty acid supply and oxidation. These findings indicate that chronic ß3-AR stimulation activates distinct cellular mechanisms that increase energy expenditure in BAT and WAT to improve systemic metabolism in aged mice. Our study provides foundational evidence for targeting adipose thermogenesis to improve age-related metabolic dysfunction.
RESUMO
Microvascular endothelial dysfunction, characterized by impaired neurovascular coupling, reduced glucose uptake, blood-brain barrier disruption, and microvascular rarefaction, plays a critical role in the pathogenesis of age-related vascular cognitive impairment (VCI). Emerging evidence points to non-cell autonomous mechanisms mediated by adverse circulating milieu (an increased ratio of pro-geronic to anti-geronic circulating factors) in the pathogenesis of endothelial dysfunction leading to impaired cerebral blood flow and cognitive decline in the aging population. In particular, age-related adipose dysfunction contributes, at least in part, to an unfavorable systemic milieu characterized by chronic hyperglycemia, hyperinsulinemia, dyslipidemia, and altered adipokine profile, which together contribute to microvascular endothelial dysfunction. Hence, in the present study, we aimed to test whether thermogenic stimulation, an intervention known to improve adipose and systemic metabolism by increasing cellular energy expenditure, could mitigate brain endothelial dysfunction and improve cognition in the aging population. Eighteen-month-old old C57BL/6J mice were treated with saline or CL (ß3-adrenergic agonist) for 6 weeks followed by functional analysis to assess endothelial function and cognition. CL treatment improved neurovascular coupling responses and rescued brain glucose uptake in aged animals. In addition, CL treatment also attenuated blood-brain barrier leakage and associated neuroinflammation in the cortex of aged animals. More importantly, these beneficial changes in microvascular function translated to improved cognitive performance in radial arm water maze and Y-maze tests. Our results suggest that ß3-adrenergic agonist treatment improves multiple aspects of brain microvascular endothelial function and can be potentially repurposed for treating age-associated cognitive decline.
RESUMO
Fabricating and designing a scaffold is a complex and highly challenging process in the current scenario. The present study deals with the design and fabrication of electrospun Santa Barbara Amorphous (SBA)-15-incorporated polyvinyl alcohol (PVA) with curcumin, which can be used as a biomimetic nanoscaffold for skin tissue engineering. Curcumin was selected due to its effective anti-microbial and anti-inflammatory properties. SBA-15 was selected for its characteristic drug-carrying potential. Fourier transform infrared spectroscopy and x-ray diffraction characterizations of the fabricated nanofiber demonstrated the interaction of PVA, SBA-15 and curcumin. The scanning electron microscopy results depicted that the nanofiber was highly interconnected with a porous structure mimicking the extracellular matrix. The nanofibrous scaffold showed a higher percentage of cell migration, proliferation, cytocompatibility and biocompatibility with absence of cytotoxicity which was evidenced from the results of MTT assay, cell adhesion and live/dead assay using HaCaT cells. The results of the anti-bacterial test depicted that the synthesized nanofiber forms a potent material for skin wound-healing therapeutics. The in vitro drug release study performed over a period of 80 h revealed a sustained release pattern of curcumin from the SBA-15-incorporated PVA nanofiber. Finally, the in vivo results confirmed that SBA-15-incorporated PVA nanofiber with curcumin showed efficient wound-healing activities.