Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mov Disord ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177409

RESUMO

BACKGROUND: Neuroaxonal dystrophy (NAD) is a group of inherited neurodegenerative disorders characterized primarily by the presence of spheroids (swollen axons) throughout the central nervous system. In humans, NAD is heterogeneous, both clinically and genetically. NAD has also been described to naturally occur in large animal models, such as dogs. A newly recognized disorder in Miniature American Shepherd dogs (MAS), consisting of a slowly progressive neurodegenerative syndrome, was diagnosed as NAD via histopathology. OBJECTIVES: To describe the clinical and pathological phenotype together with the identification of the underlying genetic cause. METHODS: Clinical and postmortem evaluations, together with a genome-wide association study and autozygosity mapping approach, followed by whole-genome sequencing. RESULTS: Affected dogs were typically young adults and displayed an abnormal gait characterized by pelvic limb weakness and ataxia. The underlying genetic cause was identified as a 1-bp (base pair) deletion in RNF170 encoding ring finger protein 170, which perfectly segregates in an autosomal recessive pattern. This deletion is predicted to create a frameshift (XM_038559916.1:c.367delG) and early truncation of the RNF170 protein (XP_038415844.1:(p.Ala123Glnfs*11)). The age of this canine RNF170 variant was estimated at ~30 years, before the reproductive isolation of the MAS breed. CONCLUSIONS: RNF170 variants were previously identified in human patients with autosomal recessive spastic paraplegia-85 (SPG85); this clinical phenotype shows similarities to the dogs described herein. We therefore propose that this novel MAS NAD could serve as an excellent large animal model for equivalent human diseases, particularly since affected dogs demonstrate a relatively long lifespan, which represents an opportunity for therapeutic trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

2.
Vaccine ; 42(12): 3099-3106, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38604911

RESUMO

Both genetic and non-genetic factors contribute to individual variation in the immune response to vaccination. Understanding how genetic background influences variation in both magnitude and persistence of vaccine-induced immunity is vital for improving vaccine development and identifying possible causes of vaccine failure. Dogs provide a relevant biomedical model for investigating mammalian vaccine genetics; canine breed structure and long linkage disequilibrium simplify genetic studies in this species compared to humans. The objective of this study was to estimate the heritability of the antibody response to vaccination against viral and bacterial pathogens, and to identify genes driving variation of the immune response to vaccination in Beagles. Sixty puppies were immunized following a standard vaccination schedule with an attenuated combination vaccine containing antigens for canine adenovirus type 2, canine distemper virus, canine parainfluenza virus, canine parvovirus, and four strains of Leptospira bacteria. Serum antibody measurements for each viral and bacterial component were measured at multiple time points. Heritability estimations and GWAS were conducted using SNP genotypes at 279,902 markers together with serum antibody titer phenotypes. The heritability estimates were: (1) to Leptospira antigens, ranging from 0.178 to 0.628; and (2) to viral antigens, ranging from 0.199 to 0.588. There was not a significant difference between overall heritability of vaccine-induced immune response to Leptospira antigens compared to viral antigens. Genetic architecture indicates that SNPs of low to high effect contribute to immune response to vaccination. GWAS identified two genetic markers associated with vaccine-induced immune response phenotypes. Collectively, these findings indicate that genetic regulation of the immune response to vaccination is antigen-specific and influenced by multiple genes of small effect.


Assuntos
Adenovirus Caninos , Vírus da Cinomose Canina , Cinomose , Doenças do Cão , Vacinas Virais , Animais , Cães , Humanos , Estudo de Associação Genômica Ampla , Projetos Piloto , Anticorpos Antivirais , Adenovirus Caninos/genética , Antígenos Virais , Vacinação/veterinária , Vacinas Atenuadas , Imunidade , Vírus da Cinomose Canina/genética , Doenças do Cão/prevenção & controle , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA