Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
iScience ; 27(1): 108477, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38205261

RESUMO

Toxoplasma gondii causes morbidity, mortality, and disseminates widely via cat sexual stages. Here, we find T. gondii ornithine aminotransferase (OAT) is conserved across phyla. We solve TgO/GABA-AT structures with bound inactivators at 1.55 Å and identify an inactivator selective for TgO/GABA-AT over human OAT and GABA-AT. However, abrogating TgO/GABA-AT genetically does not diminish replication, virulence, cyst-formation, or eliminate cat's oocyst shedding. Increased sporozoite/merozoite TgO/GABA-AT expression led to our study of a mutagenized clone with oocyst formation blocked, arresting after forming male and female gametes, with "Rosetta stone"-like mutations in genes expressed in merozoites. Mutations are similar to those in organisms from plants to mammals, causing defects in conception and zygote formation, affecting merozoite capacitation, pH/ionicity/sodium-GABA concentrations, drawing attention to cyclic AMP/PKA, and genes enhancing energy or substrate formation in TgO/GABA-AT-related-pathways. These candidates potentially influence merozoite's capacity to make gametes that fuse to become zygotes, thereby contaminating environments and causing disease.

2.
Vaccines (Basel) ; 11(9)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37766162

RESUMO

CD4+ T cells have been found to play critical roles in the control of both acute and chronic Toxoplasma infection. Previous studies identified a protective role for the Toxoplasma CD4+ T cell-eliciting peptide AS15 (AVEIHRPVPGTAPPS) in C57BL/6J mice. Herein, we found that immunizing mice with AS15 combined with GLA-SE, a TLR-4 agonist in emulsion adjuvant, can be either helpful in protecting male and female mice at early stages against Type I and Type II Toxoplasma parasites or harmful (lethal with intestinal, hepatic, and spleen pathology associated with a storm of IL6). Introducing the universal CD4+ T cell epitope PADRE abrogates the harmful phenotype of AS15. Our findings demonstrate quantitative and qualitative features of an effective Toxoplasma-specific CD4+ T cell response that should be considered in testing next-generation vaccines against toxoplasmosis. Our results also are cautionary that individual vaccine constituents can cause severe harm depending on the company they keep.

4.
Emerg Microbes Infect ; 10(1): 1675-1682, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34165384

RESUMO

Point-of-care (POC) testing for Toxoplasma infection has the potential to revolutionize diagnosis and management of toxoplasmosis, especially in high-risk populations in areas with significant environmental contamination and poor health infrastructure precluding appropriate follow-up and preventing access to medical care. Toxoplasmosis is a significant public health challenge in Morocco, with a relatively heavy burden of infection and, to this point, minimal investment nationally to address this infection. Herein, we analyse the performance of a novel, low-cost rapid test using fingerstick-derived whole blood from 632 women (82 of whom were pregnant) from slums, educational centres, and from nomad groups across different geographical regions (i.e. oceanic, mountainous) of Morocco. The POC test was highly sensitive and specific from all settings. In the first group of 283 women, sera were tested by Platelia ELISA IgG and IgM along with fingerstick whole blood test. Then a matrix study with 349 women was performed in which fingerstick - POC test results and serum obtained by venipuncture contemporaneously were compared. These results show high POC test performance (Sensitivity: 96.4% [IC95 90.6-98.9%]; Specificity: 99.6% [IC95 97.3-99.9%]) and high prevalence of Toxoplasma infection among women living in rural and mountainous areas, and in urban areas with lower educational levels. The high performance of POC test confirms that it can reduce the need for venipuncture and clinical infrastructure in a low-resource setting. It can be used to efficiently perform seroprevalence determinations in large group settings across a range of demographics, and potentially expands healthcare access, thereby preventing human suffering.


Assuntos
Testes Imediatos/normas , Toxoplasma/imunologia , Toxoplasmose/sangue , Toxoplasmose/diagnóstico , Adolescente , Adulto , Idoso , Anticorpos Antiprotozoários/sangue , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Pessoa de Meia-Idade , Marrocos/epidemiologia , Testes Imediatos/economia , Gravidez , Prevalência , Fatores de Risco , Sensibilidade e Especificidade , Estudos Soroepidemiológicos , Toxoplasmose/epidemiologia , Toxoplasmose/imunologia , Toxoplasmose Congênita/sangue , Toxoplasmose Congênita/diagnóstico , Adulto Jovem
5.
Expert Rev Mol Diagn ; 21(2): 141-160, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33593219

RESUMO

INTRODUCTION: SARS-Cov-2 first appeared in Wuhan, China, in December 2019 and spread all over the world soon after that. Given the infectious nature ofSARS-CoV-2, fast and accurate diagnosis tools are important to detect the virus. In this review, we discuss the different diagnostic tests that are currently being implemented in laboratories and provide a description of various COVID-19 kits. AREAS COVERED: We summarize molecular techniques that target the viral load, serological methods used for SARS-CoV-2 specific antibodies detection as well as newly developed faster assays for the detection of SARS-COV 2 in various biological samples. EXPERT OPINION: In the light of the widespread pandemic, the massive diagnosis of COVID-19, using various detection techniques, appears to be the most effective strategy for monitoring and containing its propagation.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , Teste de Ácido Nucleico para COVID-19/tendências , Teste Sorológico para COVID-19/métodos , Teste Sorológico para COVID-19/tendências , COVID-19/diagnóstico , Anticorpos Antivirais/imunologia , Técnicas Biossensoriais , Sistemas CRISPR-Cas , Técnicas de Laboratório Clínico , Humanos , Imunoensaio , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Laboratórios , Radiografia Torácica , Kit de Reagentes para Diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tomografia Computadorizada por Raios X
6.
Sci Rep ; 10(1): 16984, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046728

RESUMO

Fighting smart diseases requires smart vaccines. Novel ways to present protective immunogenic peptide epitopes to human immune systems are needed. Herein, we focus on Self Assembling Protein Nanoparticles (SAPNs) as scaffolds/platforms for vaccine delivery that produce strong immune responses against Toxoplasma gondii in HLA supermotif, transgenic mice. Herein, we present a useful platform to present peptides that elicit CD4+, CD8+ T and B cell immune responses in a core architecture, formed by flagellin, administered in combination with TLR4 ligand-emulsion (GLA-SE) adjuvant. We demonstrate protection of HLA-A*11:01, HLA-A*02:01, and HLA-B*07:02 mice against toxoplasmosis by (i) this novel chimeric polypeptide, containing epitopes that elicit CD8+ T cells, CD4+ T helper cells, and IgG2b antibodies, and (ii) adjuvant activation of innate immune TLR4 and TLR5 pathways. HLA-A*11:01, HLA-A*02:01, and HLA-B*07:02q11 transgenic mouse splenocytes with peptides demonstrated predicted genetic restrictions. This creates a new paradigm-shifting vaccine approach to prevent toxoplasmosis, extendable to other diseases.


Assuntos
Antígenos de Protozoários/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos/imunologia , Toxoplasma/fisiologia , Toxoplasmose/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Adjuvantes Imunológicos , Animais , Antígenos de Protozoários/química , Células Cultivadas , Epitopos/química , Antígeno HLA-A11/metabolismo , Antígeno HLA-A2/metabolismo , Antígeno HLA-B7/metabolismo , Humanos , Imunoglobulina G/sangue , Ativação Linfocitária , Camundongos , Camundongos Transgênicos , Nanopartículas/química , Engenharia de Proteínas
7.
Artigo em Inglês | MEDLINE | ID: mdl-32626661

RESUMO

Apicomplexan infections cause substantial morbidity and mortality, worldwide. New, improved therapies are needed. Herein, we create a next generation anti-apicomplexan lead compound, JAG21, a tetrahydroquinolone, with increased sp3-character to improve parasite selectivity. Relative to other cytochrome b inhibitors, JAG21 has improved solubility and ADMET properties, without need for pro-drug. JAG21 significantly reduces Toxoplasma gondii tachyzoites and encysted bradyzoites in vitro, and in primary and established chronic murine infections. Moreover, JAG21 treatment leads to 100% survival. Further, JAG21 is efficacious against drug-resistant Plasmodium falciparum in vitro. Causal prophylaxis and radical cure are achieved after P. berghei sporozoite infection with oral administration of a single dose (2.5 mg/kg) or 3 days treatment at reduced dose (0.625 mg/kg/day), eliminating parasitemia, and leading to 100% survival. Enzymatic, binding, and co-crystallography/pharmacophore studies demonstrate selectivity for apicomplexan relative to mammalian enzymes. JAG21 has significant promise as a pre-clinical candidate for prevention, treatment, and cure of toxoplasmosis and malaria.


Assuntos
Parasitos , Toxoplasma , Toxoplasmose , Animais , Camundongos , Plasmodium falciparum
11.
Artigo em Inglês | MEDLINE | ID: mdl-30838177

RESUMO

Twenty-two compounds belonging to several classes of polyamine analogs have been examined for their ability to inhibit the growth of the human malaria parasite Plasmodium falciparum in vitro and in vivo. Four lead compounds from the thiourea sub-series and one compound from the urea-based analogs were found to be potent inhibitors of both chloroquine-resistant (Dd2) and chloroquine-sensitive (3D7) strains of Plasmodium with IC50 values ranging from 150 to 460 nM. In addition, the compound RHW, N1,N7-bis (3-(cyclohexylmethylamino) propyl) heptane-1,7-diamine tetrabromide was found to inhibit Dd2 with an IC50 of 200 nM. When RHW was administered to P. yoelii-infected mice at 35 mg/kg for 4 days, it significantly reduced parasitemia. RHW was also assayed in combination with the ornithine decarboxylase inhibitor difluoromethylornithine, and the two drugs were found not to have synergistic antimalarial activity. Furthermore, these inhibitors led to decreased cellular spermidine and spermine levels in P. falciparum, suggesting that they exert their antimalarial activities by inhibition of spermidine synthase.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Poliaminas/farmacologia , Espermidina/análise , Espermina/análise , Animais , Antimaláricos/administração & dosagem , Modelos Animais de Doenças , Sinergismo Farmacológico , Concentração Inibidora 50 , Malária/tratamento farmacológico , Camundongos , Carga Parasitária , Parasitemia , Testes de Sensibilidade Parasitária , Plasmodium falciparum/química , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium yoelii/efeitos dos fármacos , Poliaminas/administração & dosagem
12.
Artigo em Inglês | MEDLINE | ID: mdl-30345257

RESUMO

Toxoplasma gondii, an Apicomplexan parasite, causes significant morbidity and mortality, including severe disease in immunocompromised hosts and devastating congenital disease, with no effective treatment for the bradyzoite stage. To address this, we used the Tropical Disease Research database, crystallography, molecular modeling, and antisense to identify and characterize a range of potential therapeutic targets for toxoplasmosis. Phosphoglycerate mutase II (PGMII), nucleoside diphosphate kinase (NDK), ribulose phosphate 3-epimerase (RPE), ribose-5-phosphate isomerase (RPI), and ornithine aminotransferase (OAT) were structurally characterized. Crystallography revealed insights into the overall structure, protein oligomeric states and molecular details of active sites important for ligand recognition. Literature and molecular modeling suggested potential inhibitors and druggability. The targets were further studied with vivoPMO to interrupt enzyme synthesis, identifying the targets as potentially important to parasitic replication and, therefore, of therapeutic interest. Targeted vivoPMO resulted in statistically significant perturbation of parasite replication without concomitant host cell toxicity, consistent with a previous CRISPR/Cas9 screen showing PGM, RPE, and RPI contribute to parasite fitness. PGM, RPE, and RPI have the greatest promise for affecting replication in tachyzoites. These targets are shared between other medically important parasites and may have wider therapeutic potential.


Assuntos
Enzimas/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Toxoplasma/enzimologia , Toxoplasma/fisiologia , Cristalografia por Raios X , Enzimas/química , Enzimas/genética , Técnicas de Silenciamento de Genes , Modelos Moleculares , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Toxoplasma/crescimento & desenvolvimento
13.
Emerg Microbes Infect ; 7(1): 165, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30262847

RESUMO

Globally, congenital toxoplasmosis remains a significant cause of morbidity and mortality, and outbreaks of infection with T. gondii represent a significant, emerging public health burden, especially in the developing world. This parasite is a threat to public health. Disease often is not recognized and is inadequately managed. Herein, we analyze the status of congenital toxoplasmosis in Morocco, Colombia, the United States, and France. We identify the unique challenges faced by each nation in the implementation of optimal approaches to congenital toxoplasmosis as a public health problem. We suggest that developed and developing countries use a multipronged approach, modeling their public health management protocols after those in France. We conclude that education, screening, appropriate treatment, and the development of novel modalities will be required to intervene successfully in caring for individuals with this infection. Gestational screening has been demonstrated to be cost-effective, morbidity-sparing, and life-saving. Recognition of the value and promise of public health interventions to prevent human suffering from this emerging infection will facilitate better patient and societal outcomes.


Assuntos
Toxoplasma/fisiologia , Toxoplasmose Congênita/parasitologia , Colômbia , França , Humanos , Marrocos , Saúde Pública , Toxoplasma/genética , Toxoplasma/isolamento & purificação , Toxoplasmose Congênita/tratamento farmacológico , Estados Unidos
15.
NPJ Vaccines ; 2: 24, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29263879

RESUMO

We designed and produced a self-assembling protein nanoparticle. This self-assembling protein nanoparticle contains five CD8+ HLA-A03-11 supertypes-restricted epitopes from antigens expressed during Toxoplasma gondii's lifecycle, the universal CD4+ T cell epitope PADRE, and flagellin as a scaffold and TLR5 agonist. These CD8+ T cell epitopes were separated by N/KAAA spacers and optimized for proteasomal cleavage. Self-assembling protein nanoparticle adjuvanted with TLR4 ligand-emulsion GLA-SE were evaluated for their efficacy in inducing IFN-γ responses and protection of HLA-A*1101 transgenic mice against T. gondii. Immunization, using self-assembling protein nanoparticle-GLA-SE, activated CD8+ T cells to produce IFN-γ. Self-assembling protein nanoparticle-GLA-SE also protected HLA-A*1101 transgenic mice against subsequent challenge with Type II parasites. Hence, combining CD8+ T cell-eliciting peptides and PADRE into a multi-epitope protein that forms a nanoparticle, administered with GLA-SE, leads to efficient presentation by major histocompatibility complex Class I and II molecules. Furthermore, these results suggest that activation of TLR4 and TLR5 could be useful for development of vaccines that elicit T cells to prevent toxoplasmosis in humans.

16.
Sci Rep ; 7(1): 11496, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28904337

RESUMO

One third of humans are infected lifelong with the brain-dwelling, protozoan parasite, Toxoplasma gondii. Approximately fifteen million of these have congenital toxoplasmosis. Although neurobehavioral disease is associated with seropositivity, causality is unproven. To better understand what this parasite does to human brains, we performed a comprehensive systems analysis of the infected brain: We identified susceptibility genes for congenital toxoplasmosis in our cohort of infected humans and found these genes are expressed in human brain. Transcriptomic and quantitative proteomic analyses of infected human, primary, neuronal stem and monocytic cells revealed effects on neurodevelopment and plasticity in neural, immune, and endocrine networks. These findings were supported by identification of protein and miRNA biomarkers in sera of ill children reflecting brain damage and T. gondii infection. These data were deconvoluted using three systems biology approaches: "Orbital-deconvolution" elucidated upstream, regulatory pathways interconnecting human susceptibility genes, biomarkers, proteomes, and transcriptomes. "Cluster-deconvolution" revealed visual protein-protein interaction clusters involved in processes affecting brain functions and circuitry, including lipid metabolism, leukocyte migration and olfaction. Finally, "disease-deconvolution" identified associations between the parasite-brain interactions and epilepsy, movement disorders, Alzheimer's disease, and cancer. This "reconstruction-deconvolution" logic provides templates of progenitor cells' potentiating effects, and components affecting human brain parasitism and diseases.

17.
Cell Mol Gastroenterol Hepatol ; 4(2): 285-297, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28795125

RESUMO

BACKGROUND & AIMS: Despite a prominent association, chronic intestinal barrier loss is insufficient to induce disease in human subjects or experimental animals. We hypothesized that compensatory mucosal immune activation might protect individuals with increased intestinal permeability from disease. We used a model in which intestinal barrier loss is triggered by intestinal epithelial-specific expression of constitutively active myosin light chain kinase (CA-MLCK). Here we asked whether constitutive tight junction barrier loss impacts susceptibility to enteric pathogens. METHODS: Acute or chronic Toxoplasma gondii or Salmonella typhimurium infection was assessed in CA-MLCK transgenic or wild-type mice. Germ-free mice or those lacking specific immune cell populations were used to investigate the effect of microbial-activated immunity on pathogen translocation in the context of increased intestinal permeability. RESULTS: Acute T gondii and S typhimurium translocation across the epithelial barrier was reduced in CA-MLCK mice. This protection was due to enhanced mucosal immune activation that required CD4+ T cells and interleukin 17A but not immunoglobulin A. The protective mucosal immune activation in CA-MLCK mice depended on segmented filamentous bacteria (SFB), because protection against early S typhimurium invasion was lost in germ-free CA-MLCK mice but could be restored by conventionalization with SFB-containing, not SFB-deficient, microbiota. In contrast, chronic S typhimurium infection was more severe in CA-MLCK mice, suggesting that despite activation of protective mucosal immunity, barrier defects ultimately result in enhanced disease progression. CONCLUSIONS: Increased epithelial tight junction permeability synergizes with commensal bacteria to promote intestinal CD4+ T-cell expansion and interleukin 17A production that limits enteric pathogen invasion.

18.
PLoS Negl Trop Dis ; 11(6): e0005670, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28650970

RESUMO

BACKGROUND: Congenital toxoplasmosis is a serious but preventable and treatable disease. Gestational screening facilitates early detection and treatment of primary acquisition. Thus, fetal infection can be promptly diagnosed and treated and outcomes can be improved. METHODS: We tested 180 sera with the Toxoplasma ICT IgG-IgM point-of-care (POC) test. Sera were from 116 chronically infected persons (48 serotype II; 14 serotype I-III; 25 serotype I-IIIa; 28 serotype Atypical, haplogroup 12; 1 not typed). These represent strains of parasites infecting mothers of congenitally infected children in the U.S. 51 seronegative samples and 13 samples from recently infected persons known to be IgG/IgM positive within the prior 2.7 months also were tested. Interpretation was confirmed by two blinded observers. A comparison of costs for POC vs. commercial laboratory testing methods was performed. RESULTS: We found that this new Toxoplasma ICT IgG-IgM POC test was highly sensitive (100%) and specific (100%) for distinguishing IgG/IgM-positive from negative sera. Use of such reliable POC tests can be cost-saving and benefit patients. CONCLUSIONS: Our work demonstrates that the Toxoplasma ICT IgG-IgM test can function reliably as a point-of-care test to diagnose Toxoplasma gondii infection in the U.S. This provides an opportunity to improve maternal-fetal care by using approaches, diagnostic tools, and medicines already available. This infection has serious, lifelong consequences for infected persons and their families. From the present study, it appears a simple, low-cost POC test is now available to help prevent morbidity/disability, decrease cost, and make gestational screening feasible. It also offers new options for improved prenatal care in low- and middle-income countries.


Assuntos
Anticorpos Antiprotozoários/sangue , Imunoensaio/métodos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Testes Imediatos/economia , Toxoplasma/imunologia , Toxoplasmose/diagnóstico , Custos e Análise de Custo , Países em Desenvolvimento , Testes Diagnósticos de Rotina/economia , Testes Diagnósticos de Rotina/métodos , Humanos , Imunoensaio/economia , Sensibilidade e Especificidade , Estados Unidos
19.
JCI Insight ; 1(15): e85955, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27699241

RESUMO

We created and tested multi-epitope DNA or protein vaccines with TLR4 ligand emulsion adjuvant (gluco glucopyranosyl lipid adjuvant in a stable emulsion [GLA-SE]) for their ability to protect against Toxoplasma gondii in HLA transgenic mice. Our constructs each included 5 of our best down-selected CD8+ T cell-eliciting epitopes, a universal CD4+ helper T lymphocyte epitope (PADRE), and a secretory signal, all arranged for optimal MHC-I presentation. Their capacity to elicit immune and protective responses was studied using immunization of HLA-A*11:01 transgenic mice. These multi-epitope vaccines increased memory CD8+ T cells that produced IFN-γ and protected mice against parasite burden when challenged with T. gondii. Endocytosis of emulsion-trapped protein and cross presentation of the antigens must account for the immunogenicity of our adjuvanted protein. Thus, our work creates an adjuvanted platform assembly of peptides resulting in cross presentation of CD8+ T cell-eliciting epitopes in a vaccine that prevents toxoplasmosis.


Assuntos
Vacinas Protozoárias/uso terapêutico , Toxoplasmose/prevenção & controle , Animais , Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada , Epitopos de Linfócito T/imunologia , Feminino , Antígenos HLA-A , Memória Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Toxoplasma
20.
Sci Rep ; 6: 29179, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27412848

RESUMO

Toxoplasma gondii, the most common parasitic infection of human brain and eye, persists across lifetimes, can progressively damage sight, and is currently incurable. New, curative medicines are needed urgently. Herein, we develop novel models to facilitate drug development: EGS strain T. gondii forms cysts in vitro that induce oocysts in cats, the gold standard criterion for cysts. These cysts highly express cytochrome b. Using these models, we envisioned, and then created, novel 4-(1H)-quinolone scaffolds that target the cytochrome bc1 complex Qi site, of which, a substituted 5,6,7,8-tetrahydroquinolin-4-one inhibits active infection (IC50, 30 nM) and cysts (IC50, 4 µM) in vitro, and in vivo (25 mg/kg), and drug resistant Plasmodium falciparum (IC50, <30 nM), with clinically relevant synergy. Mutant yeast and co-crystallographic studies demonstrate binding to the bc1 complex Qi site. Our results have direct impact on improving outcomes for those with toxoplasmosis, malaria, and ~2 billion persons chronically infected with encysted bradyzoites.


Assuntos
Descoberta de Drogas , Quinolonas/farmacologia , Toxoplasma/efeitos dos fármacos , Toxoplasmose/tratamento farmacológico , Animais , Gatos , Citocromos b/genética , Modelos Animais de Doenças , Resistência a Medicamentos/genética , Fezes/parasitologia , Humanos , Oocistos/efeitos dos fármacos , Oocistos/patogenicidade , Contagem de Ovos de Parasitas , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade , Toxoplasma/genética , Toxoplasma/patogenicidade , Toxoplasmose/genética , Toxoplasmose/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA