Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578484

RESUMO

The present study was aimed at evaluating the influence of the subchronic exposure of cadmium (Cd), copper (Cu), and nickel (Ni) mixtures on affective behaviors, memory impairment, and oxidative stress (OS) in the hippocampus. Thirty male Wistar rats were divided into 5 equal groups. Group 1 (control) received a saline solution (NaCl 0.9%). Groups 2, 3, and 4 received Cd (0.25 mg/kg), Cu (0.5 mg/kg), and Ni (0.25 mg/kg), respectively, while group 5 received a Cd, Cu, and Ni mixture through intraperitoneal injections for 2 months. After the exposure period, all rats were submitted to behavioral tests. Subsequently, OS markers and histological changes in the rats' hippocampi were assessed. Results showed that a 2-month exposure to the mixtures of metals (MM) has led to higher anxiety-like and depression-like behaviors and cognitive deficits in rats when compared to the control group and the individual metals. Furthermore, the MM induced heightened OS, evidenced by the rise in lipid peroxidation and nitric oxide levels. These effects were accompanied by a decrease in superoxide dismutase and catalase activities in the hippocampus. The histopathological analysis also supported that MM caused a neuronal loss in the CA3 sub-region. Overall, this study underscores that subchronic exposure to the Cd, Cu, and Ni mixture induces an OS status and histological changes in the hippocampus, with important affective and cognitive behavior variations in rats.

2.
Neurotox Res ; 42(2): 24, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598025

RESUMO

The investigation into the hippocampal function and its response to heavy metal exposure is crucial for understanding the mechanisms underlying neurotoxicity, this can potentially inform strategies for mitigating the adverse effects associated with heavy metal exposure. Melatonin is an essential neuromodulator known for its efficacy as an antioxidant. In this study, we aimed to determine whether melatonin could protect against Nickel (Ni) neurotoxicity. To achieve this, we performed an intracerebral injection of Ni (300 µM NiCl2) into the right hippocampus of male Wistar rats, followed by melatonin treatment. Based on neurobehavioral and neurobiochemical assessments, our results demonstrate that melatonin efficiently enhances Ni-induced behavioral dysfunction and cognitive impairment. Specifically, melatonin treatment positively influences anxious behavior, significantly reduces immobility time in the forced swim test (FST), and improves learning and spatial memory abilities. Moreover, neurobiochemical assays revealed that melatonin treatment modulates the Ni-induced alterations in oxidative stress balance by increasing antioxidant enzyme activities, such as superoxide dismutase (SOD) and catalase (CAT). Additionally, we observed that melatonin significantly attenuated the increased levels of lipid peroxidation (LPO) and nitric oxide (NO). In conclusion, the data from this study suggests that melatonin attenuates oxidative stress, which is the primary mechanism responsible for Ni-induced neurotoxicity. Considering that the hippocampus is the main structure involved in the pathology associated with heavy metal intoxication, such as Ni, these findings underscore the potential therapeutic efficacy of melatonin in mitigating heavy metal-induced brain damage.


Assuntos
Melatonina , Síndromes Neurotóxicas , Masculino , Ratos , Animais , Antioxidantes/farmacologia , Melatonina/farmacologia , Melatonina/uso terapêutico , Níquel/toxicidade , Ratos Wistar , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle
3.
Biol Trace Elem Res ; 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38146034

RESUMO

Iron is the dominant metal in the brain and is distributed widely. However, it can lead to various neuropathological and neurobehavioral abnormalities as well as oxidative stress. On the other hand, melatonin, a pineal hormone, is known for its neuroprotective properties, as well as its ability to act as a natural chelator against oxidative stress. It has also been used as an antidepressant and anxiolytic. The study investigated the potential of melatonin and EDTA treatment to prevent anxiety, depressive behavior, and memory impairment in male rats induced by chronic iron administration, and its connection to oxidative stress regulation in the hippocampus and prefrontal cortex. The rats were divided into six groups and intraperitoneally injected for 8 weeks with NaCl solution (control), iron sulfate (1 mg/kg), melatonin (4 mg/kg), EDTA (4 mg/kg), 1 mg/kg of iron + 4 mg/kg of melatonin, or 1 mg/kg of iron + 4 mg/kg of EDTA. In this study, we performed a neurobehavioral assessment and biochemical determinations of oxidative stress levels in the hippocampus and prefrontal cortex of each animal. The results indicate that chronic exposure to iron sulfate induced anxiety-like depressive behavior, and cognitive impairment also increased the levels of lipid peroxidation and nitric oxide, and reduced the activity of catalase in the hippocampus and prefrontal cortex in male Wistar rats, suggesting the induction of oxidative stress. In contrast, these alterations were reversed by melatonin better than EDTA. The results of this study show that melatonin protects against the neurobehavioral changes caused by iron, which may be associated with decreasing oxidative stress in the hippocampus and prefrontal cortex.

4.
Biol Trace Elem Res ; 199(9): 3382-3392, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33230633

RESUMO

The present study focused on affective and cognitive behaviors in male Wistar rats, following direct and unique exposure to nickel chloride (NiCl2), as well as the possible involvement of oxidative stress. The rats were exposed to NiCl2 (300 µM), by intracerebral administration of 2 µL of this metal at the right hippocampus, using the stereotaxic approach. Five days after the surgery, a battery of behavioral tests was performed, including the open-field test (OFT) and elevated plus maze test (EPM) to assess the state of anxiety-like behavior and forced swimming test (FST) for depressive-like behavior. Y-maze and Morris Water Maze (MWM) were used to evaluate working memory and spatial learning. Thereafter, oxidative stress markers of the hippocampus were evaluated. The results confirm that NiCl2 exerts anxiogenic effects in both anxiety tests and depressogenic effects in the FST. In addition, MWM and Y-maze data show that NiCl2 causes memory and spatial learning disorders. The biochemical assay results showed that intrahippocampal injection of NiCl2 increased the levels of nitric oxide and lipid peroxidation (p < 0.001), while the activities of catalase and superoxide dismutase were significantly decreased in the hippocampus (p < 0.01). Overall, these results suggest that NiCl2 causes affective and cognitive disorders and oxidative stress in rats.


Assuntos
Níquel , Estresse Oxidativo , Animais , Ansiedade/induzido quimicamente , Cognição , Hipocampo , Masculino , Aprendizagem em Labirinto , Níquel/toxicidade , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA