Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Clin Lab ; 70(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39257133

RESUMO

BACKGROUND: HEV is endemic in several Middle Eastern countries including Saudi Arabia, which hosts the annual pilgrimage for Muslims from around the world. One of the Hajj rituals is the sacrifice of animals, including camels, cows, goats, and sheep. HEV Zoonosis is established in swine and other suspected species, including deer, rabbits, dromedary, and Bactrian camels. HEV was identified in small, domesticized animals like goats, cows, sheep, and horses. We previously investigated HEV seroprevalence in Camels. This study aimed to evaluate HEV seroprevalence in other highly consumed ruminants in Saudi Arabia, namely cows, sheep, and goats. METHODS: Sera from cows (n = 47), goats (n = 56), and sheep (n = 67) were analyzed for the presence of HEV-IgG by using in-house developed ELISA assays. RESULTS: The highest seroprevalence was found in sheep (62.7%), followed by cows (38.3%), and then goats (14.3%), with a p-value of < 0.001. No other demographic characteristics of the animals were significantly correlated with the HEV seroprevalence. CONCLUSIONS: This study provides baseline data as the first study on the seroprevalence of HEV in ruminant animals in Saudi Arabia. The high seroprevalence found in sheep and cows must be further investigated for the potential zoonotic HEV transmission to humans. Further studies are needed to investigate the active viremia in these animal species through nucleic acid detection and sequencing to provide data on the circulating HEV genotypes among the targeted animal species. The detection of HEV in different animal products, such as milk, liver, and others, also remains an important study area to consider.


Assuntos
Cabras , Vírus da Hepatite E , Hepatite E , Ruminantes , Animais , Vírus da Hepatite E/genética , Vírus da Hepatite E/imunologia , Vírus da Hepatite E/isolamento & purificação , Hepatite E/epidemiologia , Hepatite E/veterinária , Hepatite E/virologia , Estudos Soroepidemiológicos , Cabras/virologia , Ovinos , Arábia Saudita/epidemiologia , Bovinos , Ruminantes/virologia , Feminino , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G/sangue , Zoonoses/virologia , Zoonoses/epidemiologia , Zoonoses/diagnóstico , Anticorpos Anti-Hepatite/sangue , Doenças das Cabras/virologia , Doenças das Cabras/epidemiologia , Doenças das Cabras/diagnóstico , Doenças das Cabras/sangue , Masculino
2.
Arch Biochem Biophys ; 760: 110124, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39154815

RESUMO

Cryptosporidium parvum (C. parvum), a protozoan parasite, is known to induce significant gastrointestinal disease in humans. Lactate dehydrogenase (LDH), a protein of C. parvum, has been identified as a potential therapeutic target for developing effective drugs against infection. This study utilized a computational drug discovery approach to identify potential drug molecules against the LDH protein of C. parvum. In the present investigation, we conducted a structure-based virtual screening of 55 phytochemicals from the Syzygium aromaticum (S. aromaticum). This process identified four phytochemicals, including Gallotannin 23, Eugeniin, Strictinin, and Ellagitannin, that demonstrated significant binding affinity and dynamic stability with LDH protein. Interestingly, these four compounds have been documented to possess antibacterial, antiviral, anti-inflammatory, and antioxidant properties. The docked complexes were simulated for 100 ns using Desmond to check the dynamic stability. Finally, the free binding energy was computed from the last 10ns MD trajectories. Gallotannin 23 and Ellagitannin exhibited considerable binding affinity and stability with the target protein among all four phytochemicals. These findings suggest that these predicted phytochemicals from S. aromaticum could be further explored as potential hit candidates for developing effective drugs against C. parvum infection. The in vitro and in vivo experimental validation is still required to confirm their efficacy and safety as LDH inhibitors.


Assuntos
Cryptosporidium parvum , L-Lactato Desidrogenase , Simulação de Dinâmica Molecular , Compostos Fitoquímicos , Syzygium , Cryptosporidium parvum/enzimologia , Cryptosporidium parvum/efeitos dos fármacos , Syzygium/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/metabolismo , Antiprotozoários/farmacologia , Antiprotozoários/química , Simulação de Acoplamento Molecular , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
3.
BMC Chem ; 18(1): 141, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080756

RESUMO

The escalating threat posed by the Monkeypox virus (MPXV) to global health necessitates the urgent discovery of effective antiviral agents, as there are currently no specific drugs available for its treatment, and existing inhibitors are hindered by toxicity and poor pharmacokinetic profiles. This study aimed to identify potent MPXV inhibitors by screening a diverse library of small molecule compounds derived from marine fungi, focusing on the viral protein VP39, a key methyltransferase involved in viral replication. An extensive virtual screening process identified four promising compounds-CMNPD15724, CMNPD28811, CMNPD30883, and CMNPD18569-alongside a control molecule. Rigorous evaluations, including re-docking, molecular dynamics (MD) simulations, and hydrogen bond analysis, were conducted to assess their inhibitory potential against MPXV VP39. CMNPD15724 and CMNPD30883, in particular, demonstrated a superior binding affinity and stable interactions within the target protein's active site throughout the MD simulations, suggesting a capacity to overcome the limitations associated with sinefungin. The stability of these VP39-compound complexes, corroborated by MD simulations, provided crucial insights into the dynamic behavior of these interactions. Furthermore, Principal Component Analysis (PCA) based free energy landscape assessments offered a detailed understanding of the dynamic conformational changes and energetic profiles underlying these compounds' functional disruption of VP39. These findings establish CMNPD15724, CMNPD28811, CMNPD30883, and CMNPD18569 as promising MPXV inhibitors and highlight marine fungi as a valuable source of novel antiviral agents. These compounds represent potential candidates for further experimental validation, advancing the development of safer and more effective therapeutic options to combat this emerging viral infection.

4.
PLoS One ; 19(6): e0304408, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38923958

RESUMO

Human Immunodeficiency Virus (HIV) is a significant threat to public health. HIV genotyping and antiretroviral resistance testing may have contributed to improved non-treated management. Immune markers might assist HIV-1 diagnosis and drug-resistant variant identification. HIV-1 immunogenicity and molecular characteristics of antiretroviral drug resistance are evaluated in 56 treatment-naive HIV patients. DNA sequencing and retroviral resistance testing identified HIV-1 genotypes. 55.4% of patients were susceptible to protease inhibitors (PI), nucleoside reverse transcriptase inhibitors (NRTI), and non-nucleoside reverse transcriptase inhibitors (NNRTI) antiretroviral drugs, whereas 44.6% had drug-resistance mutations against at least one antiretroviral drug. 3.6% of cases had PI-resistant mutations, while 30.4% had NRTI-resistant mutations, and 30.4% had NNRTI-resistant mutations. In patients who are susceptible to PI, the mean value of human plasma sCD80 is 2.11 ± 0.65 ng/mL; in patients with mutations, it is 3.93 ± 2.91 ng/mL. Individuals who are susceptible to PI have plasma sCD27 levels of 78.7 ± 63.2 U/mL, whereas individuals who are mutant have levels of 56.5 ± 32.1 U/mL. IP-10's mean value was 363 ± 109.2 pg/mL for the susceptible patients and 429 ± 20.7 pg/mL for the mutated patients. In susceptible patients, the plasma sCD4 level is 0.163 ± 0.229 ng/mL; in mutant patients, it is 0.084 ± 0.012 ng/mL. The data showed a relative relation between immunological parameters such as sCD80, sCD27, sCD4, and IP-10 and mutation for drug resistance.


Assuntos
Farmacorresistência Viral , Infecções por HIV , HIV-1 , Mutação , Humanos , HIV-1/genética , HIV-1/efeitos dos fármacos , Arábia Saudita , Masculino , Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Infecções por HIV/imunologia , Infecções por HIV/genética , Feminino , Adulto , Pessoa de Meia-Idade , Fármacos Anti-HIV/uso terapêutico , Fármacos Anti-HIV/farmacologia , Genótipo , Adulto Jovem
5.
Biomolecules ; 14(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38785930

RESUMO

Herpesvirus entry mediator (HVEM) is a molecular switch that can modulate immune responses against cancer. The significance of HVEM as an immune checkpoint target and a potential prognostic biomarker in malignancies is still controversial. This study aims to determine whether HVEM is an immune checkpoint target with inhibitory effects on anti-tumor CD4+ T cell responses in vitro and whether HVEM gene expression is dysregulated in patients with acute lymphocytic leukemia (ALL). HVEM gene expression in tumor cell lines and peripheral blood mononuclear cells (PBMCs) from ALL patients and healthy controls was measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Tumor cells were left untreated (control) or were treated with an HVEM blocker before co-culturing with CD4+ T cells in vitro in a carboxyfluorescein succinimidyl ester (CFSE)-dependent proliferation assay. HVEM expression was upregulated in the chronic myelogenous leukemia cell line (K562) (FC = 376.3, p = 0.086) compared with normal embryonic kidney cells (Hek293). CD4+ T cell proliferation was significantly increased in the HVEM blocker-treated K562 cells (p = 0.0033). Significant HVEM differences were detected in ALL PBMCs compared with the controls, and these were associated with newly diagnosed ALL (p = 0.0011) and relapsed/refractory (p = 0.0051) B cell ALL (p = 0.0039) patients. A significant differentiation between malignant ALL and the controls was observed in a receiver operating characteristic (ROC) curve analysis with AUC = 0.78 ± 0.092 (p = 0.014). These results indicate that HVEM is an inhibitory molecule that may serve as a target for immunotherapy and a potential ALL biomarker.


Assuntos
Biomarcadores Tumorais , Membro 14 de Receptores do Fator de Necrose Tumoral , Humanos , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Adulto , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Células K562 , Células HEK293 , Proliferação de Células , Idoso , Linhagem Celular Tumoral , Adulto Jovem , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia
6.
Clin Lab ; 70(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469784

RESUMO

BACKGROUND: Hepatitis B virus (HBV) and hepatitis C virus (HCV) are major health concerns worldwide. Recent data indicate a decline in prevalence in the Saudi population; however, there are no data on the prevalence in prisoners. This study is the first to investigate the prevalence of viral hepatitis in female inmates in Jeddah, Saudi Arabia. This study aimed to explore the prevalence of HBV and HCV infections and to assess the knowledge and attitudes related to these infections among inmates. METHODS: Inmates were interviewed using a pre-designed questionnaire, and their blood samples were tested for HBV and HCV infections using serology, PCR, and phylogenetic analysis. RESULTS: The overall prevalence of HBV infection in the study population was 4.4%. The age group > 25 years was predominantly affected; 11.1% of the infected cases were Saudi nationals, and 88.9% were non-Saudis. The prevalence of HCV infection was 2.4%. Among the studied variables, age and previous employment were significantly associated with positive HBV PCR, while conviction, knowledge about protection from sexually transmitted infections (STIs), knowledge about condom use for protection against STIs, and condom use for protection against STIs were significantly associated with HCV infection. CONCLUSIONS: This study shows higher HBV and HCV prevalence in the female prisoners in Briman prison compared to the general population. Uneducated prisoners, over 25 years old, and convicted of prostitution are more associated with both HBV and HCV infection. Future preventive plans should include screening new prisoners with these risk factors for HBV and HCV at the time of entry.


Assuntos
Infecções por HIV , Hepatite B , Hepatite C , Prisioneiros , Infecções Sexualmente Transmissíveis , Humanos , Feminino , Adulto , Prisões , Arábia Saudita/epidemiologia , Filogenia , Hepatite B/diagnóstico , Hepatite B/epidemiologia , Hepatite B/complicações , Hepatite C/diagnóstico , Hepatite C/epidemiologia , Hepatite C/complicações , Fatores de Risco , Infecções Sexualmente Transmissíveis/complicações , Vírus da Hepatite B , Hepacivirus , Prevalência , Infecções por HIV/complicações
7.
Diagnostics (Basel) ; 14(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38472991

RESUMO

The urgent need for accurate COVID-19 diagnostics has led to the development of various SARS-CoV-2 detection technologies. Real-time reverse transcriptase polymerase chain reaction (RT-qPCR) remains a reliable viral gene detection technique, while other molecular methods, including nucleic acid amplification techniques (NAATs) and isothermal amplification techniques, provide diverse and effective approaches. Serological assays, detecting antibodies in response to viral infection, are crucial for disease surveillance. Saliva-based immunoassays show promise for surveillance purposes. The efficiency of SARS-CoV-2 antibody detection varies, with IgM indicating recent exposure and IgG offering prolonged detectability. Various rapid tests, including lateral-flow immunoassays, present opportunities for quick diagnosis, but their clinical significance requires validation through further studies. Challenges include variations in specificity and sensitivity among testing platforms and evolving assay sensitivities over time. SARS-CoV-2 antigens, particularly the N and S proteins, play a crucial role in diagnostic methods. Innovative approaches, such as nanozyme-based assays and specific nucleotide aptamers, offer enhanced sensitivity and flexibility. In conclusion, ongoing advancements in SARS-CoV-2 detection methods contribute to the global effort in combating the COVID-19 pandemic.

8.
Mar Drugs ; 21(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38132947

RESUMO

Middle East Respiratory Syndrome (MERS) is a viral respiratory disease caused b a special type of coronavirus called MERS-CoV. In the search for effective substances against the MERS-CoV main protease, we looked into compounds from brown algae, known for their medicinal benefits. From a set of 1212 such compounds, our computer-based screening highlighted four-CMNPD27819, CMNPD1843, CMNPD4184, and CMNPD3156. These showed good potential in how they might attach to the MERS-CoV protease, comparable to a known inhibitor. We confirmed these results with multiple computer tests. Studies on the dynamics and steadiness of these compounds with the MERS-CoV protease were performed using molecular dynamics (MD) simulations. Metrics like RMSD and RMSF showed their stability. We also studied how these compounds and the protease interact in detail. An analysis technique, PCA, showed changes in atomic positions over time. Overall, our computer studies suggest brown algae compounds could be valuable in fighting MERS. However, experimental validation is needed to prove their real-world effectiveness.


Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Proteínas Virais , Infecções por Coronavirus/tratamento farmacológico , Endopeptidases , Peptídeo Hidrolases/farmacologia
9.
J Biomol Struct Dyn ; : 1-17, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37811742

RESUMO

Japanese encephalitis (JE), a neurological infection of severe nature, is caused by the Japanese encephalitis virus (JEV) and is transmitted by the mosquito vector. The polymerase domain of Non-structural 5 (NS5), which is also referred to as RdRp (RNA-dependent RNA polymerase), is considered a potential therapeutic target for JEV. The present study employed molecular dynamics modelling and high-throughput virtual screening to evaluate the possible antiviral activity of anti-dengue drugs against JEV RdRp. Furthermore, a ranking was performed utilising the MM/GBSA analysis to identify the three most promising compounds. Compound ID 57409246 exhibited the highest binding affinity with the protein, as evidenced by its minimum binding free energy of -72.96 kcal/mole. In contrast, the other two compounds had minimum binding free energies of -67.57 and -59.19 kcal/mole, respectively. Upon conducting a 100 nanosecond molecular dynamics simulation to confirm the binding of the chemical complexes, it was observed that the three hits, namely 57409246, 70683874, and 44577154, exhibited a consistent and stable RMSD. Subsequently, the binding strength of the trajectory was confirmed through MM/GBSA analysis. The compounds 70683874 and 57409246 exhibited the lowest binding free energies, which were -97.58 kcal/mol and -96.38 kcal/mol, respectively. The binding free energy (ΔG Bind) values for the native ligand ATP and molecule 44577154 were -65.64 kcal/mol and -69.44 kcal/mol, respectively. Overall, compared to the native ligand ATP, all three compounds exhibited higher binding affinity. The study proposes three anti-dengue molecules as a potential remedy for JE, which can be confirmed through in vitro and in vivo investigations.Communicated by Ramaswamy H. Sarma.

10.
Sci Rep ; 13(1): 14570, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666979

RESUMO

Monkeypox viral infection is an emerging threat and a major concern for the human population. The lack of drug molecules to treat this disease may worsen the problem. Identifying potential drug targets can significantly improve the process of developing potent drug molecules for treating monkeypox. The proteins responsible for viral replication are attractive drug targets. Identifying potential inhibitors from known drug molecules that target these proteins can be key to finding a cure for monkeypox. In this work, two viral proteins, DNA-dependent RNA polymerase (DdRp) and viral core cysteine proteinase, were considered as potential drug targets. Sixteen antibiotic drugs from the tetracycline class were screened against both viral proteins through high-throughput virtual screening. These tetracycline class of antibiotic drugs have the ability to inhibit bacterial protein synthesis, which makes these antibiotics drugs a prominent candidate for drug repurposing. Based on the screening result obtained against DdRp, top two compounds, namely Tigecycline and Eravacycline with docking scores of - 8.88 and - 7.87 kcal/mol, respectively, were selected for further analysis. Omadacycline and minocycline, with docking scores of - 10.60 and - 7.51 kcal/mol, are the top two compounds obtained after screening proteinase with the drug library. These compounds, along with reference compounds GTP for DdRp and tecovirimat for proteinase, were used to form protein-ligand complexes, followed by their evaluation through a 300 ns molecular dynamic simulation. The MM/GBSA binding free energy calculation and principal components analysis of these selected complexes were also conducted for understanding the dynamic stability and binding affinity of these compounds with respective target proteins. Overall, this study demonstrates the repurposing of tetracycline-derived drugs as a therapeutic solution for monkeypox viral infection.


Assuntos
Monkeypox virus , Mpox , Humanos , Reposicionamento de Medicamentos , Antibacterianos/farmacologia , Tetraciclina/farmacologia , Minociclina , Descoberta de Drogas , Peptídeo Hidrolases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA