Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Pharm Investig ; 51(6): 735-757, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513113

RESUMO

Purpose: A novel coronavirus (COVID-19) that has not been previously identified in humans and has no specific treatment has recently spread. Treatment trials using antiviral and immune-modulating drugs such as hydroxychloroquine (HCQ) were used to control this viral outbreak however several side effects have emerged. Berberine (BER) is an alkaloid that has been reported to reveal some pharmacological properties including antioxidant and antimicrobial activities. Additionally, Zinc oxide nanoparticles (ZnO-NPs) possess potent antioxidant and anti-inflammatory properties. Therefore, this study was undertaken to estimate the efficiency of both BER and synthetic ZnO/BER complex as an anti-COVID-19 therapy. Methods: First, the ZnO/BER complex was prepared by the facile mixing method. Then in vitro studies on the two compounds were conducted including VeroE6 toxicity, anti-COVID-19 activity, determination of inhibitory activity towards papain-like proteinase (PL pro) and spike protein- and receptor- binding domain (RBD) as well as assessment of drug toxicity on RBCs. Results: The results showed that ZnO/BER complex acts as an anti-COVID-19 by inhibiting spike protein binding with angiotensin-converting enzyme II (ACE II), PL pro activity, spike protein and E protein levels, and expression of both E-gene and RNA dependent RNA polymerase (RdRp) at a concentration lower than that of BER or ZnO-NPs alone. Furthermore, ZnO/BER complex had antioxidant and antimicrobial properties where it prevents the auto oxidation of 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and the culture of lower respiratory system bacteria that affected Covid 19 patients. The ZnO/BER complex prevented as well the HCQ cytotoxic effect on both RBC and WBC (in vitro) and hepatotoxicity, nephrotoxicity and anemia that occurred after HCQ long administration in vivo. Conclusion: The ZnO/BER complex can be accounted as promising anti-COVID 19 candidate because it inhibited the virus entry, replication, and assembly. Furthermore, it could be used to treat a second bacterial infection that took place in hospitalized COVID 19 patients. Moreover, ZnO/BER complex was found to eliminate the toxicity of long-term administration of HCQ in vivo.

2.
Chem Pharm Bull (Tokyo) ; 62(9): 856-66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25177014

RESUMO

In this study, synthesis and docking studies of a series of new benzimidazole derivatives linked to substituted pyrimidines either through the methylenethio linkage or its bioisosteric methylene amino bridge were carried out. All the synthesized compounds were evaluated for their hepatitis C virus (HCV) RNA replication-inhibitory activity. Compounds 4d, 4f, and 4h were found to be more potent than VX-950 (IC50/90 of 4d=0.123/0.321, 4f=0.145/0.345, 4h=0.129/0.432, VX-950=0.20/0.45 µM, respectively) and 6d (IC50/90=0.116/0.452 µM) displayed activity very similar to that of the standard. Compounds 4d, 4f, 4h, and 6d were potent HCV RNA replication inhibitors and are good drug candidates for further investigations.


Assuntos
Benzimidazóis/síntese química , Benzimidazóis/farmacologia , Hepacivirus/genética , Modelos Moleculares , RNA Viral/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , Benzimidazóis/química , Linhagem Celular , Hepacivirus/fisiologia , Humanos , RNA Viral/biossíntese , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA