Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1866(3): 474-485, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30321616

RESUMO

Triple negative breast cancer is an aggressive type of cancer that does not respond to hormonal therapy and current therapeutic strategies are accompanied by side effects due to cytotoxic actions on normal tissues. Therefore, there is a need for the identification of anti-cancer compounds with negligible effects on non-tumoral cells. Here we show that (-)­oleocanthal (OLCT), a phenolic compound isolated from olive oil, selectively impairs MDA-MB-231 cell proliferation and viability without affecting the ability of non-tumoral MCF10A cells to proliferate or their viability. Similarly, OLCT selectively impairs the ability of MDA-MB-231 cells to migrate while the ability of MCF10A to migrate was unaffected. The effect of OLCT was not exclusive for triple negative breast cancer cells as we found that OLCT also attenuate cell viability and proliferation of MCF7 cells. Our results indicate that OLCT is unable to induce Ca2+ mobilization in non-tumoral cells. By contrast, OLCT induces Ca2+ entry in MCF7 and MDA-MB-231 cells, which is impaired by TRPC6 expression silencing. We have found that MDA-MB-231 and MCF7 cells overexpress the channel TRPC6 as compared to non-tumoral MCF10A and treatment with OLCT for 24-72 h downregulates TRPC6 expression in MDA-MB-231 cells. These findings indicate that OLCT impairs the ability of breast cancer cells to proliferate and migrate via downregulation of TRPC6 channel expression while having no effect on the biology of non-tumoral breast cells.


Assuntos
Aldeídos/farmacologia , Cálcio/metabolismo , Fenóis/farmacologia , Canal de Cátion TRPC6/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Aldeídos/isolamento & purificação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Monoterpenos Ciclopentânicos , Feminino , Humanos , Células MCF-7 , Azeite de Oliva/química , Fenóis/isolamento & purificação , Neoplasias de Mama Triplo Negativas/patologia
2.
Mini Rev Med Chem ; 11(2): 131-42, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21222578

RESUMO

Blood platelets play a crucial role in the primary hemostasis and vessel wall repair. However; platelet hyperactivation is implicated in the pathogenesis of cardiovascular diseases such as thrombosis, atherosclerosis and stroke. Epidemiological data have suggested that regular consumption of fruits and vegetables, which are rich in flavonoids, is associated to a reduction in cardiovascular events. The cardioprotective effect of flavonoids is partly due to the inhibition of platelet function. However; the mechanisms underlying the anti-platelet effect of these compounds remain unclear. The aim of this review is to discuss the role of platelets in cardiovascular disease and to provide an overview of the potential anti-platelet effect of flavonoids, focusing on the various platelet signaling pathways modulated by flavonoids, including oxidative stress, protein tyrosine phosphorylation, calcium mobilization and nitric oxide pathway. The understanding of these mechanisms will be helpful in the development of new anti-platelet agents based on flavonoids with fewer or no adverse effects.


Assuntos
Plaquetas/efeitos dos fármacos , Flavonoides/farmacologia , Transdução de Sinais/efeitos dos fármacos , Plaquetas/fisiologia , Doenças Cardiovasculares/fisiopatologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA