Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 22(3): 766-75, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931095

RESUMO

X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edge sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies.

2.
J Chem Phys ; 138(1): 014104, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23298025

RESUMO

We present a Wavelet transform analysis for the X-ray absorption spectra of molecules. In contrast to the traditionally used Fourier transform approach, this analysis yields a 2D correlation plot in both R- and k-space. As a consequence, it is possible to distinguish between different scattering pathways at the same distance from the absorbing atom and between the contributions of single and multiple scattering events, making an unambiguous assignment of the fine structure oscillations for complex systems possible. We apply this to two previously studied transition metal complexes, namely iron hexacyanide in both its ferric and ferrous form, and a rhenium diimine complex, [ReX(CO)(3)(bpy)], where X = Br, Cl, or ethyl pyridine (Etpy). Our results demonstrate the potential advantages of using this approach and they highlight the importance of multiple scattering, and specifically the focusing phenomenon to the extended X-ray absorption fine structure (EXAFS) spectra of these complexes. We also shed light on the low sensitivity of the EXAFS spectrum to the Re-X scattering pathway.

3.
J Phys Chem A ; 117(2): 361-9, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23249289

RESUMO

Steady-state and picosecond time-resolved X-ray absorption spectroscopy is used to study the ground and lowest triplet states of [ReX(CO)(3)(bpy)](n+), X = Etpy (n = 1), Cl, or Br (n = 0). We demonstrate that the transient spectra at both the Re L(3)- and Br K-edges show the emergence of a pre-edge feature, absent in the ground-state spectrum, which is associated with the electron hole created in the highest occupied molecular orbital following photoexcitation. Importantly, these features have the same dynamics, confirming previous predictions that the low-lying excited states of these complexes involve a two-center charge transfer from both the Re and the ligand, X. We also demonstrate that the DFT optimized ground and excited structures allow us to reproduce the experimental XANES and EXAFS spectra. The ground-state structural refinement shows that the Br atom contributes very little to the latter, whereas the Re-C-O scattering paths are dominant due to the so-called focusing effect. For the excited-state spectrum, the Re-X bond undergoes one of the largest changes but still remains a weak contribution to the photoinduced changes of the EXAFS spectrum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA