Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; : 107352, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723750

RESUMO

In Escherichia coli, the master transcription regulator Catabolite Repressor Activator (Cra) regulates >100 genes in central metabolism. Cra binding to DNA is allosterically regulated by binding to fructose-1-phosphate (F-1-P), but the only documented source of F-1-P is from the concurrent import and phosphorylation of exogenous fructose. Thus, many have proposed that fructose-1,6-bisphosphate (F-1,6-BP) is also a physiological regulatory ligand. However, the role of F-1,6-BP has been widely debated. Here, we report that the E. coli enzyme fructose-1-kinase (FruK) can carry out its "reverse" reaction under physiological substrate concentrations to generate F-1-P from F-1,6-BP. We further show that FruK directly binds Cra with nanomolar affinity and forms higher order, heterocomplexes. Growth assays with a ΔfruK strain and fruK complementation show that FruK has a broader role in metabolism than fructose catabolism. Since fruK itself is repressed by Cra, these newly-reported events add layers to the dynamic regulation of E. coli central metabolism that occur in response to changing nutrients. These findings might have wide-spread relevance to other γ-proteobacteria, which conserve both Cra and FruK.

2.
Sci Rep ; 13(1): 9018, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270573

RESUMO

Type III secretion system (T3SS) effector proteins are primarily recognized for binding host proteins to subvert host immune response during infection. Besides their known host target proteins, several T3SS effectors also interact with endogenous bacterial proteins. Here we demonstrate that the Salmonella T3SS effector glycosyltransferase SseK1 glycosylates the bacterial two-component response regulator OmpR on two arginine residues, R15 and R122. Arg-glycosylation of OmpR results in reduced expression of ompF, a major outer membrane porin gene. Glycosylated OmpR has reduced affinity to the ompF promoter region, as compared to the unglycosylated form of OmpR. Additionally, the Salmonella ΔsseK1 mutant strain had higher bile salt resistance and increased capacity to form biofilms, as compared to WT Salmonella, thus linking OmpR glycosylation to several important aspects of bacterial physiology.


Assuntos
Proteínas da Membrana Bacteriana Externa , Ácidos e Sais Biliares , Proteínas da Membrana Bacteriana Externa/metabolismo , Arginina/metabolismo , Salmonella/genética , Salmonella/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
bioRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38168282

RESUMO

In Escherichia coli, the master transcription regulator Catabolite Repressor Activator (Cra) regulates >100 genes in central metabolism. Cra binding to DNA is allosterically regulated by binding to fructose-1-phosphate (F-1-P), but the only documented source of F-1-P is from the concurrent import and phosphorylation of exogenous fructose. Thus, many have proposed that fructose-1,6-bisphosphate (F-1,6-BP) is also a physiological regulatory ligand. However, the role of F-1,6-BP has been widely debated. Here, we report that the E. coli enzyme fructose-1-kinase (FruK) can carry out its "reverse" reaction under physiological substrate concentrations to generate F-1-P from F-1,6-BP. We further show that FruK directly binds Cra with nanomolar affinity and forms higher order, heterocomplexes. Growth assays with a ΔfruK strain and fruK complementation show that FruK has a broader role in metabolism than fructose catabolism. The ΔfruK strain also alters biofilm formation. Since fruK itself is repressed by Cra, these newly-reported events add layers to the dynamic regulation of E. coli central metabolism that occur in response to changing nutrients. These findings might have wide-spread relevance to other γ-proteobacteria, which conserve both Cra and FruK.

4.
Sci Rep ; 12(1): 5293, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35351940

RESUMO

The Salmonella enterica SseK1 protein is a type three secretion system effector that glycosylates host proteins during infection on specific arginine residues with N-acetyl glucosamine (GlcNAc). SseK1 also Arg-glycosylates endogenous bacterial proteins and we thus hypothesized that SseK1 activities might be integrated with regulating the intrabacterial abundance of UPD-GlcNAc, the sugar-nucleotide donor used by this effector. After searching for new SseK1 substrates, we found that SseK1 glycosylates arginine residues in the dual repressor-activator protein NagC, leading to increased DNA-binding affinity and enhanced expression of the NagC-regulated genes glmU and glmS. SseK1 also glycosylates arginine residues in GlmR, a protein that enhances GlmS activity. This Arg-glycosylation improves the ability of GlmR to enhance GlmS activity. We also discovered that NagC is a direct activator of glmR expression. Salmonella lacking SseK1 produce significantly reduced amounts of UDP-GlcNAc as compared with Salmonella expressing SseK1. Overall, we conclude that SseK1 up-regulates UDP-GlcNAc synthesis both by enhancing the DNA-binding activity of NagC and by increasing GlmS activity through GlmR glycosylation. Such regulatory activities may have evolved to maintain sufficient levels of UDP-GlcNAc for both bacterial cell wall precursors and for SseK1 to modify other bacterial and host targets in response to environmental changes and during infection.


Assuntos
Salmonella enterica , Arginina/metabolismo , Glicosilação , Salmonella enterica/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Difosfato de Uridina/metabolismo
5.
Pathogens ; 11(3)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35335693

RESUMO

We are interested in identifying and characterizing small molecule inhibitors of bacterial virulence factors for their potential use as anti-virulence inhibitors. We identified from high-throughput screening assays a potential activity for avasimibe, a previously characterized acyl-coenzyme A: cholesterol acyltransferase inhibitor, in inhibiting the NleB and SseK arginine glycosyltransferases from Escherichia coli and Salmonella enterica, respectively. Avasimibe inhibited the activity of the Citrobacter rodentium NleB, E. coli NleB1, and S. enterica SseK1 enzymes, without affecting the activity of the human serine/threonine N-acetylglucosamine (O-GlcNAc) transferase. Avasimibe was not toxic to mammalian cells at up to 200 µM and was neither bacteriostatic nor bactericidal at concentrations of up to 125 µM. Doses of 10 µM avasimibe were sufficient to reduce S. enterica abundance in RAW264.7 macrophage-like cells, and intraperitoneal injection of avasimibe significantly reduced C. rodentium survival in mice, regardless of whether the avasimibe was administered pre- or post-infection. We propose that avasimibe or related derivates created using synthetic chemistry may have utility in preventing or treating bacterial infections by inhibiting arginine glycosyltransferases that are important to virulence.

6.
Chem Sci ; 12(36): 12181-12191, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34667584

RESUMO

NleB/SseK effectors are arginine-GlcNAc-transferases expressed by enteric bacterial pathogens that modify host cell proteins to disrupt signaling pathways. While the conserved Citrobacter rodentium NleB and E. coli NleB1 proteins display a broad selectivity towards host proteins, Salmonella enterica SseK1, SseK2, and SseK3 have a narrowed protein substrate selectivity. Here, by combining computational and biophysical experiments, we demonstrate that the broad protein substrate selectivity of NleB relies on Tyr284NleB/NleB1, a second-shell residue contiguous to the catalytic machinery. Tyr284NleB/NleB1 is important in coupling protein substrate binding to catalysis. This is exemplified by S286YSseK1 and N302YSseK2 mutants, which become active towards FADD and DR3 death domains, respectively, and whose kinetic properties match those of enterohemorrhagic E. coli NleB1. The integration of these mutants into S. enterica increases S. enterica survival in macrophages, suggesting that better enzymatic kinetic parameters lead to enhanced virulence. Our findings provide insights into how these enzymes finely tune arginine-glycosylation and, in turn, bacterial virulence. In addition, our data show how promiscuous glycosyltransferases preferentially glycosylate specific protein substrates.

7.
Pathogens ; 10(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065796

RESUMO

Whether type III secretion system (T3SS) effector proteins encoded by Gram-negative bacterial pathogens have intra-bacterial activities is an important and emerging area of investigation. Gram-negative bacteria interact with their mammalian hosts by using secretion systems to inject virulence proteins directly into infected host cells. Many of these injected protein effectors are enzymes that modify the structure and inhibit the function of mammalian proteins. The underlying dogma is that T3SS effectors are inactive until they are injected into host cells, where they then fold into their active conformations. We previously observed that the T3SS effectors NleB and SseK1 glycosylate Citrobacter rodentium and Salmonella enterica proteins, respectively, leading to enhanced resistance to environmental stress. Here, we sought to extend these studies to determine whether the T3SS effector protease NleC is also active within C. rodentium. To do this, we expressed the best-characterized mammalian substrate of NleC, the NF-κB p65 subunit in C. rodentium and monitored its proteolytic cleavage as a function of NleC activity. Intra-bacterial p65 cleavage was strictly dependent upon NleC. A p65 mutant lacking the known CE cleavage motif was resistant to NleC. Thus, we conclude that, in addition to NleB, NleC is also enzymatically active within C. rodentium.

8.
Pathogens ; 10(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672424

RESUMO

The type III secretion system effector proteins NleB and SseK are glycosyltransferases that glycosylate protein substrates on arginine residues. We conducted high-throughput screening assays on 42,498 compounds to identify NleB/SseK inhibitors. Such small molecules may be useful as mechanistic probes and may have utility in the eventual development of anti-virulence therapies against enteric bacterial pathogens. We observed that YM155 (sepantronium bromide) inhibits the activity of Escherichia coli NleB1, Citrobacter rodentium NleB, and both Salmonella enterica SseK1 and SseK2. YM155 was not toxic to mammalian cells, nor did it show cross-reactivity with the mammalian O-linked N-acetylglucosaminyltransferase (OGT). YM155 reduced Salmonella survival in mouse macrophage-like cells but had no direct impact on bacterial growth rates, suggesting YM155 may have utility as a potential anti-virulence inhibitor.

9.
Sci Rep ; 11(1): 3834, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589708

RESUMO

Type III secretion system effector proteins have primarily been characterized for their interactions with host cell proteins and their ability to disrupt host signaling pathways. We are testing the hypothesis that some effectors are active within the bacterium, where they modulate bacterial signal transduction and physiology. We previously determined that the Citrobacter rodentium effector NleB possesses an intra-bacterial glycosyltransferase activity that increases glutathione synthetase activity to protect the bacterium from oxidative stress. Here we investigated the potential intra-bacterial activities of NleB orthologs in Salmonella enterica and found that SseK1 and SseK3 mediate resistance to methylglyoxal. SseK1 glycosylates specific arginine residues on four proteins involved in methylglyoxal detoxification, namely GloA (R9), GloB (R190), GloC (R160), and YajL (R149). SseK1-mediated Arg-glycosylation of these four proteins significantly enhances their catalytic activity, thus providing another important example of the intra-bacterial activities of type three secretion system effector proteins. These data are also the first demonstration that a Salmonella T3SS effector is active within the bacterium.


Assuntos
Arginina/metabolismo , Inativação Metabólica , Aldeído Pirúvico/metabolismo , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromatografia Líquida , Citrobacter rodentium/fisiologia , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Glicosilação , Metaboloma , Modelos Biológicos , Espectrometria de Massas em Tandem , Sistemas de Secreção Tipo III
10.
Appl Microbiol Biotechnol ; 104(22): 9719-9732, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33009938

RESUMO

Salmonella spp. can cause animal and human salmonellosis. In this study, we established a simple method to detect all Salmonella species by amplifying a specific region within the flgE gene encoding the flagellar hook protein. Our preliminary sequence analysis among flagella-associated genes of Salmonella revealed that although Salmonella Gallinarum and Salmonella Pullorum are lacking flagella, they did have flagella-associated genes, including flgE. To investigate in detail, a comparative flgE sequence analysis was conducted using different bacterial strains including flagellated and non-flagellated Salmonella as well as non-Salmonella strains. Two unique regions (481-529 bp and 721-775 bp of the reference sequence) within the flgE open reading frame were found to be highly conserved and specific to all Salmonella species. Next, we designed a pair of PCR primers (flgE-UP and flgE-LO) targeting the above two regions, and performed a flgE-tailored PCR using as template DNA prepared from a total of 76 bacterial strains (31 flagellated Salmonella strains, 26 non-flagellated Salmonella strains, and 19 other non-Salmonella bacteria strains). Results showed that specific positive bands with expected size were obtained from all Salmonella (including flagellated and non-flagellated Salmonella) strains, while no specific product was generated from non-Salmonella bacterial strains. PCR products from the positive bands were confirmed by DNA sequencing. The minimum detection amount for genomic DNA and bacteria cells reached 18.3 pg/µL and 100 colony-forming unit (CFU) per PCR reaction, respectively. Using the flgE-PCR method to detect Salmonella in artificially contaminated milk samples, as low as 1 CFU/mL Salmonella was detectable after an 8-h pre-culture. Meanwhile, the flgE-tailored PCR method was applied to evaluate 247 clinical samples infected with Salmonella from different chicken breeding farms. The detection results indicated that flgE-PCR could be used to specifically detect Salmonella in concordance with the traditional bacterial culture-based detection method. It is worthwhile noticed that identification results using flgE-tailored PCR should be completed within less than 1 day, expanding the result of much faster than the standard method, which took more than 5 days. Overall, the flgE-tailored PCR method can specifically detect flagellated and non-flagellated Salmonella and can serve as a powerful tool for rapid, simple, and sensitive detection of Salmonella species. KEY POINTS : • Targeting flgE gene for all Salmonella spp. found. • The established PCR assay is used to specifically detect all Salmonella spp. • The PCR method is applied to detect clinical Salmonella spp. samples within less than 1 day.


Assuntos
Proteínas de Bactérias , Salmonella , Animais , Proteínas de Bactérias/genética , Galinhas , Flagelos/genética , Humanos , Reação em Cadeia da Polimerase , Salmonella/genética , Sensibilidade e Especificidade
11.
Sci Rep ; 10(1): 1073, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974499

RESUMO

Many Gram-negative bacterial pathogens interact with mammalian cells by using type III secretion systems (T3SS) to inject virulence proteins into host cells. A subset of these injected protein 'effectors' are enzymes that inhibit the function of host proteins by catalyzing the addition of unusual post-translational modifications. The E. coli and Citrobacter rodentium NleB effectors, as well as the Salmonella enterica SseK effectors are glycosyltransferases that modify host protein substrates with N-acetyl glucosamine (GlcNAc) on arginine residues. This post-translational modification disrupts the normal functioning of host immune response proteins. T3SS effectors are thought to be inactive within the bacterium and fold into their active conformations after they are injected, due to the activity of chaperones that keep the effectors in a structural state permissive for secretion. While performing mass spectrometry experiments to identify glycosylation substrates of NleB orthologs, we unexpectedly observed that the bacterial glutathione synthetase (GshB) is glycosylated by NleB on arginine residue R256. NleB-mediated glycosylation of GshB resulted in enhanced GshB activity, leading to an increase in glutathione production, and promoted C. rodentium survival in oxidative stress conditions. These data represent, to our knowledge, the first intra-bacterial activity for a T3SS effector and show that arginine-GlcNAcylation, once thought to be restricted to host cell compartments, also plays an important role in regulating bacterial physiology.


Assuntos
Proteínas de Bactérias/metabolismo , Citrobacter rodentium/metabolismo , Salmonella enterica/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/genética , Citrobacter rodentium/genética , Glicosilação , Salmonella enterica/genética , Sistemas de Secreção Tipo III/genética
12.
Adv Exp Med Biol ; 1111: 205-218, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30411307

RESUMO

Bacteria deliver virulence proteins termed 'effectors' to counteract host innate immunity. Protein-protein interactions within the host cell ultimately subvert the generation of an inflammatory response to the infecting pathogen. Here we briefly describe a subset of T3SS effectors produced by enterohemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli (EPEC), Citrobacter rodentium, and Salmonella enterica that inhibit innate immune pathways. These effectors are interesting for structural and mechanistic reasons, as well as for their potential utility in being engineered to treat human autoimmune disorders associated with perturbations in NF-κB signaling.


Assuntos
Citrobacter rodentium/imunologia , Escherichia coli Enteropatogênica/imunologia , Proteínas de Escherichia coli/metabolismo , Imunidade Inata/imunologia , Salmonella enterica/imunologia , Sistemas de Secreção Tipo III/metabolismo , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Citrobacter rodentium/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Humanos , Salmonella enterica/metabolismo , Fatores de Virulência/imunologia , Fatores de Virulência/metabolismo
13.
Pathogens ; 7(4)2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405005

RESUMO

Many Gram-negative bacterial pathogens use type III secretion systems to deliver virulence proteins (effectors) into host cells to counteract innate immunity. The ribosomal protein S3 (RPS3) guides NF-κB subunits to specific κB sites and plays an important role in the innate response to bacterial infection. Two E. coli effectors inhibit RPS3 nuclear translocation. NleH1 inhibits RPS3 phosphorylation by IKK-ß, an essential aspect of the RPS3 nuclear translocation process. NleC proteolysis of p65 generates an N-terminal p65 fragment that competes for full-length p65 binding to RPS3, thus also inhibiting RPS3 nuclear translocation. Thus, E. coli has multiple mechanisms by which to block RPS3-mediated transcriptional activation. With this in mind, we considered whether other enteric pathogens also encode T3SS effectors that impact this important host regulatory pathway. Here we report that the Salmonella Secreted Effector L (SseL), which was previously shown to function as a deubiquitinase and inhibit NF-κB signaling, also inhibits RPS3 nuclear translocation by deubiquitinating this important host transcriptional co-factor. RPS3 deubiquitination by SseL was restricted to K63-linkages and mutating the active-site cysteine of SseL abolished its ability to deubiquitinate and subsequently inhibit RPS3 nuclear translocation. Thus, Salmonella also encodes at least one T3SS effector that alters RPS3 activities in the host nucleus.

14.
Nat Commun ; 9(1): 4283, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327479

RESUMO

The bacterial effector proteins SseK and NleB glycosylate host proteins on arginine residues, leading to reduced NF-κB-dependent responses to infection. Salmonella SseK1 and SseK2 are E. coli NleB1 orthologs that behave as NleB1-like GTs, although they differ in protein substrate specificity. Here we report that these enzymes are retaining glycosyltransferases composed of a helix-loop-helix (HLH) domain, a lid domain, and a catalytic domain. A conserved HEN motif (His-Glu-Asn) in the active site is important for enzyme catalysis and bacterial virulence. We observe differences between SseK1 and SseK2 in interactions with substrates and identify substrate residues that are critical for enzyme recognition. Long Molecular Dynamics simulations suggest that the HLH domain determines substrate specificity and the lid-domain regulates the opening of the active site. Overall, our data suggest a front-face SNi mechanism, explain differences in activities among these effectors, and have implications for future drug development against enteric pathogens.


Assuntos
Arginina/metabolismo , Proteínas de Bactérias/química , Interações Hospedeiro-Patógeno/fisiologia , Acetilglucosamina/metabolismo , Animais , Arginina/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Escherichia coli/química , Feminino , Glicosilação , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Salmonella typhimurium/patogenicidade , Especificidade por Substrato , Fatores de Virulência/química
15.
Artigo em Inglês | MEDLINE | ID: mdl-30619781

RESUMO

The enteropathogenic and enterohemorrhagic Escherichia coli NleB proteins as well as the Salmonella enterica SseK proteins are type III secretion system effectors that function as glycosyltransferase enzymes to post-translationally modify host substrates on arginine residues. This modification is unusual because it occurs on the guanidinium groups of arginines, which are poor nucleophiles, and is distinct from the activity of the mammalian O-linked N-acetylglucosaminyltransferase. We conducted high-throughput screening assays to identify small molecules that inhibit NleB/SseK activity. Two compounds, 100066N and 102644N, both significantly inhibited NleB1, SseK1, and SseK2 activities. Addition of these compounds to cultured mammalian cells was sufficient to inhibit NleB1 glycosylation of the tumor necrosis factor receptor type 1-associated DEATH domain protein. These compounds were also capable of inhibiting Salmonella enterica strain ATCC 14028 replication in mouse macrophage-like cells. Neither inhibitor was significantly toxic to mammalian cells, nor showed in vitro cross-reactivity with the mammalian O-linked N-acetylglucosaminyltransferase. These compounds or derivatives generated from medicinal chemistry refinements may have utility as a potential alternative therapeutic strategy to antibiotics or as reagents to further the study of bacterial glycosyltransferases.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/isolamento & purificação , Proteínas de Escherichia coli/antagonistas & inibidores , Glicosiltransferases/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Fatores de Virulência/antagonistas & inibidores , Animais , Linhagem Celular , Humanos , Macrófagos/microbiologia , Camundongos , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/enzimologia , Salmonella enterica/crescimento & desenvolvimento
16.
J Biol Chem ; 292(27): 11423-11430, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28522607

RESUMO

Many Gram-negative bacterial pathogens use a syringe-like apparatus called a type III secretion system to inject virulence factors into host cells. Some of these effectors are enzymes that modify host proteins to subvert their normal functions. NleB is a glycosyltransferase that modifies host proteins with N-acetyl-d-glucosamine to inhibit antibacterial and inflammatory host responses. NleB is conserved among the attaching/effacing pathogens enterohemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli (EPEC), and Citrobacter rodentium Moreover, Salmonella enterica strains encode up to three NleB orthologs named SseK1, SseK2, and SseK3. However, there are conflicting reports regarding the activities and host protein targets among the NleB/SseK orthologs. Therefore, here we performed in vitro glycosylation assays and cell culture experiments to compare the activities and substrate specificities of these effectors. SseK1, SseK3, EHEC NleB1, EPEC NleB1, and Crodentium NleB blocked TNF-mediated NF-κB pathway activation, whereas SseK2 and NleB2 did not. C. rodentium NleB, EHEC NleB1, and SseK1 glycosylated host GAPDH. C. rodentium NleB, EHEC NleB1, EPEC NleB1, and SseK2 glycosylated the FADD (Fas-associated death domain protein). SseK3 and NleB2 were not active against either substrate. We also found that EHEC NleB1 glycosylated two GAPDH arginine residues, Arg197 and Arg200, and that these two residues were essential for GAPDH-mediated activation of TNF receptor-associated factor 2 ubiquitination. These results provide evidence that members of this highly conserved family of bacterial virulence effectors target different host protein substrates and exhibit distinct cellular modes of action to suppress host responses.


Assuntos
Proteínas de Bactérias/metabolismo , Citrobacter rodentium/enzimologia , Escherichia coli Êntero-Hemorrágica/enzimologia , Escherichia coli Enteropatogênica/enzimologia , Proteínas de Escherichia coli/metabolismo , Salmonella enterica/enzimologia , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Citrobacter rodentium/genética , Citrobacter rodentium/patogenicidade , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/patogenicidade , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/genética , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Glicosilação , Camundongos , Células RAW 264.7 , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Salmonella enterica/genética , Salmonella enterica/patogenicidade , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Ubiquitinação , Fatores de Virulência/genética
17.
J Bacteriol ; 195(10): 2187-96, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23475965

RESUMO

Vitamin B6 is an essential cofactor for a large number of enzymes in both prokaryotes and eukaryotes. In this study, we characterized the pyridoxal 5'-phosphate (PLP) biosynthesis pathway in Streptococcus pneumoniae. Our results revealed that S. pneumoniae possesses a de novo vitamin B6 biosynthesis pathway encoded by the pdxST genes. Purified PdxS functionally displayed as PLP synthase, whereas PdxT exhibited glutaminase activity in vitro. Deletion of pdxS, but not pdxT, resulted in a vitamin B6 auxotrophic mutant. The defective growth of the ΔpdxS mutant in a vitamin B6-depleted medium could be chemically restored in the presence of the B6 vitamers at optimal concentrations. By analyzing PdxS expression levels, we demonstrated that the expression of pdxS was repressed by PLP and activated by a transcription factor, PdxR. A pneumococcal ΔpdxR mutant also exhibited as a vitamin B6 auxotroph. In addition, we found that disruption of the vitamin B6 biosynthesis pathway in S. pneumoniae caused a significant attenuation in a chinchilla middle ear infection model and a minor attenuation in a mouse pneumonia model, indicating that the impact of vitamin B6 synthesis on virulence depends upon the bacterial infection niche.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções Pneumocócicas/metabolismo , Fosfato de Piridoxal/metabolismo , Streptococcus pneumoniae/metabolismo , Fatores de Transcrição/metabolismo , Vitamina B 6/biossíntese , Animais , Proteínas de Bactérias/genética , Northern Blotting , Western Blotting , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Infecções Pneumocócicas/genética , Streptococcus pneumoniae/genética , Fatores de Transcrição/genética
18.
Microbiology (Reading) ; 157(Pt 12): 3324-3339, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21948044

RESUMO

Vibrio anguillarum utilizes quorum sensing to regulate stress responses required for survival in the aquatic environment. Like other Vibrio species, V. anguillarum contains the gene qrr1, which encodes the ancestral quorum regulatory RNA Qrr1, and phosphorelay quorum-sensing systems that modulate the expression of small regulatory RNAs (sRNAs) that destabilize mRNA encoding the transcriptional regulator VanT. In this study, three additional Qrr sRNAs were identified. All four sRNAs were positively regulated by σ(54) and the σ(54)-dependent response regulator VanO, and showed a redundant activity. The Qrr sRNAs, together with the RNA chaperone Hfq, destabilized vanT mRNA and modulated expression of VanT-regulated genes. Unexpectedly, expression of all four qrr genes peaked at high cell density, and exogenously added N-acylhomoserine lactone molecules induced expression of the qrr genes at low cell density. The phosphotransferase VanU, which phosphorylates and activates VanO, repressed expression of the Qrr sRNAs and stabilized vanT mRNA. A model is presented proposing that VanU acts as a branch point, aiding cross-regulation between two independent phosphorelay systems that activate or repress expression of the Qrr sRNAs, giving flexibility and precision in modulating VanT expression and inducing a quorum-sensing response to stresses found in a constantly changing aquatic environment.


Assuntos
Regulação Bacteriana da Expressão Gênica , MicroRNAs/genética , Fosfotransferases/metabolismo , Percepção de Quorum , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Vibrio/fisiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Modelos Biológicos , Dados de Sequência Molecular , Análise de Sequência de DNA , Vibrio/genética , Vibrio/metabolismo
19.
Mol Microbiol ; 71(1): 146-57, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19007420

RESUMO

Soupene et al. [J. Bacteriol. (2003) 185 5611-5626] made the unexpected observation that the presence of a mutation, in the gene for the N-acetylglucosamine repressor, nagC, increased the growth rate of Escherichia coli MG1655 on galactose, an unrelated sugar. We have found that NagC, binds to a single, high-affinity site overlapping the promoter of galP (galactose permease) gene and that expression of galP is repressed by a combination of NagC, GalR and GalS. In addition to the previously identified galOE operator, other gal operators further upstream are required for full repression. GalS has a specific role, as it binds with higher affinity to one of the upstream operators but its effect in vivo is only observed in the presence of GalR. Regulation of galP by three specific repressors, NagC, GalR and GalS is unusual in that it involves multiple, specific regulators from two different areas of metabolism. This novel regulation seems to be particular for E. coli and its nearest neighbour, Shigella. Other bacteria with galP orthologues, although retaining the metK-galP gene order, do not have the NagC site. Although quantitative effects were strain specific, nagC mutations increased the growth rate on galactose of all E. coli strains tested.


Assuntos
Acetilglucosamina/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Repressoras/metabolismo , DNA Bacteriano/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Monossacarídeos/genética , Regiões Operadoras Genéticas , Regiões Promotoras Genéticas
20.
J Bacteriol ; 190(13): 4677-86, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18469102

RESUMO

The Mlc and NagC transcriptional repressors bind to similar 23-bp operators. The sequences are weakly palindromic, with just four positions totally conserved. There is no cross regulation observed between the repressors in vivo, but there are no obvious bases which could be responsible for operator site discrimination. To investigate the basis for operator recognition and to try to understand what differentiates NagC sites from Mlc sites, we have undertaken mutagenesis experiments to convert ptsG from a gene regulated by Mlc into a gene regulated by NagC. There are two Mlc operators upstream of ptsG, and to switch ptsG to the NagC regulon, it was necessary to change two different characteristics of both operators. Firstly, we replaced the AT base pair at position +/-11 from the center of symmetry of the operators with a GC base pair. Secondly, we changed the sequence of the CG base pairs in the central region of the operator (positions -4 to +4 around the center of symmetry). Our results show that changes at either of these locations are sufficient to lose regulation by Mlc but that both types of changes in both operators are necessary to convert ptsG to a gene regulated by NagC. In addition, these experiments confirmed that two operators are necessary for regulation by NagC. We also show that regulation of ptsG by Mlc involves some cooperative binding of Mlc to the two operators.


Assuntos
Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Regulon/genética , Proteínas Repressoras/genética , Sequência de Bases , Sítios de Ligação/genética , Pegada de DNA , Proteínas de Escherichia coli/metabolismo , Dados de Sequência Molecular , Regiões Operadoras Genéticas/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Reação em Cadeia da Polimerase , Ligação Proteica , Proteínas Repressoras/metabolismo , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA