Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 6328, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816864

RESUMO

Metabolic reprogramming is one of the hallmarks of tumorigenesis. Here, we show that nuclear myosin 1 (NM1) serves as a key regulator of cellular metabolism. NM1 directly affects mitochondrial oxidative phosphorylation (OXPHOS) by regulating mitochondrial transcription factors TFAM and PGC1α, and its deletion leads to underdeveloped mitochondria inner cristae and mitochondrial redistribution within the cell. These changes are associated with reduced OXPHOS gene expression, decreased mitochondrial DNA copy number, and deregulated mitochondrial dynamics, which lead to metabolic reprogramming of NM1 KO cells from OXPHOS to aerobic glycolysis.This, in turn, is associated with a metabolomic profile typical for cancer cells, namely increased amino acid-, fatty acid-, and sugar metabolism, and increased glucose uptake, lactate production, and intracellular acidity. NM1 KO cells form solid tumors in a mouse model, suggesting that the metabolic switch towards aerobic glycolysis provides a sufficient carcinogenic signal. We suggest that NM1 plays a role as a tumor suppressor and that NM1 depletion may contribute to the Warburg effect at the onset of tumorigenesis.


Assuntos
Glicólise , Fosforilação Oxidativa , Camundongos , Animais , Glicólise/fisiologia , Linhagem Celular Tumoral , Carcinogênese/genética , Transformação Celular Neoplásica/metabolismo , Miosinas/metabolismo
3.
Results Probl Cell Differ ; 70: 607-624, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36348124

RESUMO

In the cell nucleus, actin participates in numerous essential processes. Actin is involved in chromatin as part of specific ATP-dependent chromatin remodeling complexes and associates with the RNA polymerase machinery to regulate transcription at multiple levels. Emerging evidence has also shown that the nuclear actin pool controls the architecture of the mammalian genome playing an important role in its hierarchical organization into transcriptionally active and repressed compartments, contributing to the clustering of RNA polymerase II into transcriptional hubs. Here, we review the most recent literature and discuss how actin involvement in genome organization impacts the regulation of gene programs that are activated or repressed during differentiation and development. As in the cytoplasm, we propose that nuclear actin is involved in key nuclear tasks in complex with different types of actin-binding proteins that regulate actin function and bridge interactions between actin and various nuclear components.


Assuntos
Actinas , Núcleo Celular , Animais , Actinas/metabolismo , Regulação da Expressão Gênica , Genoma , Cromatina/metabolismo , Transcrição Gênica , Mamíferos/genética
4.
Cell Death Dis ; 12(10): 850, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531374

RESUMO

PRC2-mediated epigenetic function involves the interaction with long non-coding RNAs (lncRNAs). Although the identity of some of these RNAs has been elucidated in the context of developmental programs, their counterparts in postmitotic adult tissue homeostasis remain uncharacterized. To this aim, we used terminally differentiated postmitotic skeletal muscle cells in which oxidative stress induces the dynamic activation of PRC2-Ezh1 through Embryonic Ectoderm Develpment (EED) shuttling to the nucleus. We identify lncRNA Malat-1 as a necessary partner for PRC2-Ezh1-dependent response to oxidative stress. We show that in this pathway, PRC2-EZH1 dynamic assembly, and in turn stress induced skeletal muscle targeted genes repression, depends specifically on Malat-1. Our study reports about PRC2-RNA interactions in the physiological context of adaptive oxidative stress response and identifies the first lncRNA involved in PRC2-Ezh1 function.


Assuntos
Epigenoma , Fibras Musculares Esqueléticas/metabolismo , Estresse Oxidativo , Complexo Repressor Polycomb 2/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Linhagem Celular , Ectoderma/embriologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Histonas/metabolismo , Lisina/metabolismo , Metilação , Camundongos , Modelos Biológicos , Atrofia Muscular/genética , Atrofia Muscular/patologia , Estresse Oxidativo/genética , Fenótipo , Complexo Repressor Polycomb 2/genética , Ligação Proteica , RNA Longo não Codificante/genética , Transcrição Gênica
5.
J Biochem ; 169(3): 243-257, 2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33351909

RESUMO

Actin is an essential regulator of cellular functions. In the eukaryotic cell nucleus, actin regulates chromatin as a bona fide component of chromatin remodelling complexes, it associates with nuclear RNA polymerases to regulate transcription and is involved in co-transcriptional assembly of nascent RNAs into ribonucleoprotein complexes. Actin dynamics are, therefore, emerging as a major regulatory factor affecting diverse cellular processes. Importantly, the involvement of actin dynamics in nuclear functions is redefining the concept of nucleoskeleton from a rigid scaffold to a dynamic entity that is likely linked to the three-dimensional organization of the nuclear genome. In this review, we discuss how nuclear actin, by regulating chromatin structure through phase separation may contribute to the architecture of the nuclear genome during cell differentiation and facilitate the expression of specific gene programs. We focus specifically on mitochondrial genes and how their dysregulation in the absence of actin raises important questions about the role of cytoskeletal proteins in regulating chromatin structure. The discovery of a novel pool of mitochondrial actin that serves as 'mitoskeleton' to facilitate organization of mtDNA supports a general role for actin in genome architecture and a possible function of distinct actin pools in the communication between nucleus and mitochondria.


Assuntos
Actinas/metabolismo , Cromatina/metabolismo , Matriz Nuclear/metabolismo , Actinas/genética , Animais , Diferenciação Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica , Genes Mitocondriais , Genoma , Humanos , Matriz Nuclear/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA