Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Orthod Sci ; 13: 7, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516108

RESUMO

BACKGROUND: Demineralization of the enamel surface, which appears as white spot lesions during and after removal of the fixed orthodontic appliance, is the most common disadvantage of the orthodontic treatment course. Using the remineralizing agents during and after orthodontic treatment helps to avoid those enamel defects. OBJECTIVE: The present study aims to assess the remineralizing effect of the chicken eggshell powder on the demineralized enamel surfaces after debonding the orthodontic bracket system. MATERIALS AND METHODS: The current study was performed on 80 prepared premolar crowns embedded into acrylic molds. The samples were prepared to receive routine steps of the bonding process for the bracket system. The paste of the chicken eggshell powder was added to the samples after the debonding process. Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) were used to evaluate the remineralization effect of the chicken eggshell powder. Also, the Vickers microhardness tester was used to assess the enamel surface microhardness. RESULTS: It was found that the mean value of the Ca/P ratio for the samples before bonding of the orthodontic bracket system was (4.17 ± 2.2). This value significantly decreased to (2 ± 1.3) after debonding of the orthodontic bracket system and then showed a significant increase to (4.79 ± 2.65) after remineralization. These results were assured by the values of the Vickers microhardness tester. CONCLUSION: The chicken eggshell powder has an excellent remineralization effect for the demineralized enamel surface after debonding the orthodontic enamel surface.

2.
Healthcare (Basel) ; 11(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36981448

RESUMO

Piezoelectric surgical instruments with various mini-sized tips and cutting technology offer a precise and thin cutting line that could allow the wider use of periodontal osseous wall swaging. This randomized controlled trial was designed to investigate the use of a minimally invasive piezo knife to harvest vascularized interseptal bone pedicles in treating intra-bony defects. Sixteen non-smoking patients (mean age 39.6 ± 3.9) with severe chronic periodontitis were randomly assigned into one of two groups (N = 8). The Group 1 (control) patients were treated by bone substitute grafting of the intra-bony defect, whereas the Group 2 patients were treated by intra-bony defect osseous wall swaging (OWS) combined with xenograft filling of the space created by bone tilting. In both groups, the root surfaces were treated with a neutral 24% EDTA gel followed by saline irrigation. Clinical and radiographic measurements were obtained at baseline and 6 months after surgery. The sites treated with osseous wall swaging showed a statistically significant probing-depth reduction and increase in clinical attachment compared with those of the Group 1 patients. The defect base level was significantly reduced for the OWS group compared to that of the Group 1 control. By contrast, the crestal bone level was significantly higher in the OWS group compared to Group 1. The crestal interseptal bone width was significantly higher in Group 2 at 6 months compared to the baseline value and to that of Group 1 (<0.001). The osseous wall swaging effectively improved the clinical hard- and soft-tissue parameters. The use of mini inserts piezo-cutting, sequential bone expanders for osseous wall redirection, and root surface EDTA etching appears to be a reliable approach that could allow the use of OWS at any interproximal dimension.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA