Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(30): 26566-26572, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35936463

RESUMO

Common buckwheat (Fagopyrum esculentum Moench) seeds are important nutritious grains that are widely spread in several human food products and livestock feed. Their health benefits are mainly due to their bioactive phenolic compounds, especially rutin and quercetin, which have a positive impact on heart health, weight loss, and diabetes management. In this study, we evaluated different media and light treatments for the in vitro cultures of common buckwheat (CB) in order to find the most optimum one producing the highest yield with the highest purity of these compounds. The subcultured treated samples included in this study were shoots, leaves, stems, hairy roots, and calli. From the several treated samples and under different light stress conditions, the best production was achieved by growing the shoots of common buckwheat in hormone-free media containing activated charcoal and exposing to blue light, attaining 4.3 mg and 7.0 mg/g of extracts of rutin and quercetin, respectively, compared to 3.7 mg of rutin/g of extract and traces of quercetin in the seeds of CB. Continuous multiplication of CB shoots in the media containing charcoal and different concentrations of kinetin produced an extract with 161 mg/g of rutin and 26 mg/g of quercetin with an almost 20-fold increase in rutin content. The rutin content under these conditions reached up to 16% w/w of the extract. The hairy root cultures of the leaves exposed to red light showed a significantly high yield of quercetin attaining 10 mg/g of extract. Large-scale production of CB shootlets under the best conditions were carried out, which enabled the isolation of pure quercetin and rutin using a simple chromatographic procedure. The identity and purity of the isolated compounds were confirmed through NMR and HPLC analyses.

2.
Nat Prod Res ; 32(15): 1867-1871, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29156979

RESUMO

Hairy root culture is a promising alternative method for the production of secondary metabolites. In this study, transformed root of Linum usitatissimum was established using Agrobacterium rhizogenes A4 strain from root cultures for lignans, phenolic acids and antioxidant capacity determination. Total lignin content (secoisolariciresinol diglucoside, secoisolariciresinol and matairesinol) was 55.5% higher in transformed root cultures than in the non-transformed root culture. Secoisolariciresinol was detected in higher concentration (2.107 µmol/g DM) in the transformed root culture than non-transformed culture (1.099 µmol/g DM). Secoisolariciresinol diglucoside and matairesinol were exclusively detected in the transformed root culture, but were not found in the non-transformed root culture. The overall production of phenolic acids in transformed roots was approximately 3.5 times higher than that of the corresponding non-transformed culture. Free radical scavenging DPPH˙ and ABTS˙+ assays showed 2.9-fold and 1.76-fold higher anti-oxidant activity in transformed root culture as compared to non-transformed.


Assuntos
Antioxidantes/análise , Linho/química , Hidroxibenzoatos/análise , Lignanas/análise , Raízes de Plantas/citologia , Antioxidantes/metabolismo , Compostos de Bifenilo/metabolismo , Butileno Glicóis/análise , Linho/citologia , Furanos/análise , Glucosídeos/análise , Lignanas/química , Picratos/metabolismo , Raízes de Plantas/química , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA