Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
J Clin Invest ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696257

RESUMO

We describe a previously-unappreciated role for Bruton's tyrosine kinase (BTK) in fungal immune surveillance against aspergillosis, an unforeseen complication of BTK inhibitors (BTKi) used for treating B-cell lymphoid malignancies. We studied BTK-dependent fungal responses in neutrophils from diverse populations, including healthy donors, BTKi-treated patients, and X-linked agammaglobulinemia patients. Upon fungal exposure, BTK was activated in human neutrophils in a TLR2-, Dectin-1-, and FcγR-dependent manner, triggering the oxidative burst. BTK inhibition selectively impeded neutrophil-mediated damage to Aspergillus hyphae, primary granule release, and the fungus-induced oxidative burst by abrogating NADPH oxidase subunit p40phox and GTPase RAC2 activation. Moreover, neutrophil-specific Btk deletion in mice enhanced aspergillosis susceptibility by impairing neutrophil function, not recruitment or lifespan. Conversely, GM-CSF partially mitigated these deficits by enhancing p47phox activation. Our findings underline the crucial role of BTK signaling in neutrophils for antifungal immunity and provide a rationale for GM-CSF use to offset these deficits in susceptible patients.

2.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38675465

RESUMO

Eugenol (Eug) is a polyphenol extracted from the essential oil of Syzygium aromaticum (L.) Merr. and Perry (Myrtaceae). The health benefits of eugenol in human diseases were proved in several studies. This work aims to evaluate the effect of eugenol on lung inflammatory disorders. For this, using human neutrophils, the antioxidant activity of eugenol was investigated in vitro. Furthermore, a model of LPS-induced lung injury in mice was used to study the anti-inflammatory effect of eugenol in vivo. Results showed that eugenol inhibits luminol-amplified chemiluminescence of resting neutrophils and after stimulation with N-formyl-methionyl-leucyl-phenylalanine (fMLF) peptide or phorbol myristate acetate (PMA). This effect was dose dependent and was significant from a low concentration of 0.1 µg/mL. Furthermore, eugenol inhibited myeloperoxidase (MPO) activity without affecting its degranulation. Eugenol has no scavenging effect on hydrogen peroxide (H2O2) and superoxide anion (O2-). Pretreatment of mice with eugenol prior to the administration of intra-tracheal LPS significantly reduced neutrophil accumulation in the bronchoalveolar lavage fluid (BALF) and decreased total proteins concentration. Moreover, eugenol clearly inhibited the activity of matrix metalloproteinases MMP-2 (21%) and MMP-9 (28%), stimulated by LPS administration. These results suggest that the anti-inflammatory effect of eugenol against the LPS-induced lung inflammation could be exerted via inhibiting myeloperoxidase and metalloproteinases activity. Thus, eugenol could be a promising molecule for the treatment of lung inflammatory diseases.

3.
Inflammation ; 47(1): 438-453, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37880427

RESUMO

Ulcerative colitis is an inflammatory bowel disease with a complex aetiology characterised by abnormal immune responses and oxidative stress-induced tissue injury. Inflammatory cells play an important role in the progression of this pathology through the overproduction of reactive oxygen species (ROS) from various sources including the NADPH oxidases (NOXs). The aim of this study was to investigate the preventive effect of apocynin, a natural antioxidant molecule and a selective inhibitor of NOXs, on acetic acid (AA)-induced ulcerative colitis in rats. Our results first confirmed that apocynin has a high free radical scavenging capacity as well as a potent iron chelating ability. Oral pretreatment of rats with apocynin (200 mg/kg and 400 mg/kg) for 7 days prior to AA-induced colitis suppressed the increase in pro-oxidant markers in colonic homogenates and preserved colonic cytoarchitecture from acetic acid-induced damage. Oral administration of apocynin (200 mg/kg and 400 mg/kg) also reduced several systemic inflammatory markers such as alkaline phosphatase, iron, pro-inflammatory cytokines, C-reactive protein and myeloperoxidase. This study shows that apocynin protects rats from acetic acid-induced colonic inflammation and suggests that apocynin may have a promising beneficial effect in the prevention of ulcerative colitis.


Assuntos
Acetofenonas , Colite Ulcerativa , Colite , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/prevenção & controle , Ácido Acético , Colite/induzido quimicamente , Espécies Reativas de Oxigênio , NADPH Oxidases , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
4.
Redox Biol ; 67: 102898, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37757542

RESUMO

TNFα-mediated signaling pathways play a pivotal role in the pathogenesis of inflammatory diseases such as rheumatoid arthritis (RA) and inflammatory bowel disease (IBD) by promoting phagocyte inflammatory functions, notably cytokine release and reactive oxygen species (ROS) production by NOX2. In contrast, interleukin-10 (IL-10), a powerful anti-inflammatory cytokine, potently shuts down phagocyte activation, making IL-10 an attractive therapeutic candidate. However, IL-10 therapy has shown limited efficacy in patients with inflammatory diseases. Here, we report that TNFα blocks IL-10 anti-inflammatory pathways in human monocytes, thereby prolonging inflammation. TNFα decreased IL-10-induced phosphorylation of STAT3 and consequently IL-10-induced expression of the major anti-inflammatory factor, SOCS3. Decreased STAT3 phosphorylation was due to a SHP1/2 phosphatase, as NSC-87877, a SHP1/2 inhibitor, restored STAT3 phosphorylation and prevented the TNFα-induced inhibition of IL-10 signaling. TNFα activated only SHP1 in human monocytes and this activation was NOX2-dependent, as diphenyleneiodonium, a NOX2 inhibitor, suppressed SHP1 activation and STAT3 dephosphorylation triggered by TNFα. ROS-induced activation of SHP1 was mediated by the redox-sensitive kinase, Lyn, as its inhibition impeded TNFα-induced SHP1 activation and STAT3 dephosphorylation. Furthermore, H2O2 recapitulated TNFα-inhibitory activity on IL-10 signaling. Finally, NSC-87877 dampened collagen antibody-induced arthritis (CAIA) in mice. These results reveal that TNFα disrupts IL-10 signaling by inducing STAT3 dephosphorylation through a NOX2-ROS-Lyn-SHP1 axis in human monocytes and that inhibition of SHP1/2 in vivo protects against CAIA. These new findings might explain the poor efficacy of IL-10 therapy in patients with inflammatory diseases and suggest that anti-TNFα agents and SHP1/2 inhibitors could improve the therapeutic use of IL-10.


Assuntos
Interleucina-10 , Monócitos , Humanos , Animais , Camundongos , Monócitos/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios , Fator de Transcrição STAT3/metabolismo
5.
Antioxidants (Basel) ; 12(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979018

RESUMO

Inflammation is the body's response to insults, for instance, lung inflammation is generally caused by pathogens or by exposure to pollutants, irritants and toxins. This process involves many inflammatory cells such as epithelial cells, monocytes, macrophages and neutrophils. These cells produce and release inflammatory mediators such as pro-inflammatory cytokines, lipids and reactive oxygen species (ROS). Lung epithelial cells and phagocytes (monocytes, macrophages and neutrophils) produce ROS mainly by the NADPH oxidase NOX1 and NOX2, respectively. The aim of this study was to investigate the effects of two NADPH oxidase inhibitors, apocynin and diphenyleneiodonium (DPI), on lipopolysaccharide (LPS)-induced lung inflammation in rats. Our results showed that apocynin and DPI attenuated the LPS-induced morphological and histological alterations of the lung, reduced edema and decreased lung permeability. The evaluation of oxidative stress markers in lung homogenates showed that apocynin and DPI inhibited LPS-induced NADPH oxidase activity, and restored superoxide dismutase (SOD) and catalase activity in the lung resulting in the reduction in LPS-induced protein and lipid oxidation. Additionally, apocynin and DPI decreased LPS-induced MPO activity in bronchoalveolar liquid and lung homogenates, TNF-α and IL-1ß in rat plasma. NADPH oxidase inhibition could be a new therapeutic strategy for the treatment of inflammatory lung diseases.

6.
Eur J Pharmacol ; 946: 175579, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36914083

RESUMO

Pulmonary hypertension (PH) is associated with pulmonary vasoconstriction and endothelial dysfunction leading to impaired nitric oxide (NO) and prostacyclin (PGI2) pathways. Metformin, the first line treatment for type 2 diabetes and AMP-activated protein kinase (AMPK) activator, has been recently highlighted as a potential PH treatment. AMPK activation has been reported to improve endothelial function by enhancing endothelial NO synthase (eNOS) activity and to have relaxant effects in blood vessels. In this study, we examined the effect of metformin treatment on PH as well as on NO and PGI2 pathways in monocrotaline (MCT)-injected rats with established PH. Moreover, we investigated the anti-contractile effects of AMPK activators on endothelium-denuded human pulmonary arteries (HPA) from Non-PH and Group 3 PH patients (due to lung diseases and/or hypoxia). Furthermore, we explored the interaction between treprostinil and the AMPK/eNOS pathway. Our results showed that metformin protected against PH progression in MCT rats where it reduced the mean pulmonary artery pressure, pulmonary vascular remodeling and right ventricular hypertrophy and fibrosis compared to vehicle-treated MCT rats. The protective effects on rat lungs were mediated in part by increasing eNOS activity and protein kinase G-1 expression but not through the PGI2 pathway. In addition, incubation with AMPK activators reduced the phenylephrine-induced contraction of endothelium-denuded HPA from Non-PH and PH patients. Finally, treprostinil also augmented eNOS activity in HPA smooth muscle cells. In conclusion, we found that AMPK activation can enhance the NO pathway, attenuate vasoconstriction by direct effects on smooth muscles, and reverse established MCT-induced PH in rats.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão Pulmonar , Metformina , Ratos , Humanos , Animais , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/prevenção & controle , Artéria Pulmonar , Metformina/efeitos adversos , Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Monocrotalina/efeitos adversos
7.
J Biol Chem ; 299(4): 103072, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36849007

RESUMO

Proteinase 3 (PR3) is the main target antigen of antineutrophil cytoplasmic antibodies (ANCAs) in PR3-ANCA-associated vasculitis. A small fraction of PR3 is constitutively exposed on the surface of quiescent blood neutrophils in a proteolytically inactive form. When activated, neutrophils expose an induced form of membrane-bound PR3 (PR3mb) on their surface as well, which is enzymatically less active than unbound PR3 in solution due to its altered conformation. In this work, our objective was to understand the respective role of constitutive and induced PR3mb in the immune activation of neutrophils triggered by murine anti-PR3 mAbs and human PR3-ANCA. We quantified immune activation of neutrophils by the measurement of the production of superoxide anions and secreted protease activity in the cell supernatant before and after treatment of the cells by alpha-1 protease inhibitor that clears induced PR3mb from the cell surface. Incubation of TNFα-primed neutrophils with anti-PR3 antibodies resulted in a significant increase in superoxide anion production, membrane activation marker exposition, and secreted protease activity. When primed neutrophils were first treated with alpha-1 protease inhibitor, we observed a partial reduction in antibody-induced neutrophil activation, suggesting that constitutive PR3mb is sufficient to activate neutrophils. The pretreatment of primed neutrophils with purified antigen-binding fragments used as competitor significantly reduced cell activation by whole antibodies. This led us to the conclusion that PR3mb promoted immune activation of neutrophils. We propose that blocking and/or elimination of PR3mb offers a new therapeutic strategy to attenuate neutrophil activation in patients with PR3-ANCA-associated vasculitis.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Anticorpos Anticitoplasma de Neutrófilos , Mieloblastina , Animais , Humanos , Camundongos , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/metabolismo , Mieloblastina/imunologia , Mieloblastina/metabolismo , Neutrófilos/metabolismo , Inibidores de Proteases/metabolismo , Superóxidos/metabolismo
8.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36835566

RESUMO

Circulating monocytes are recruited in damaged tissues to generate macrophages that modulate disease progression. Colony-stimulating factor-1 (CSF-1) promotes the generation of monocyte-derived macrophages, which involves caspase activation. Here, we demonstrate that activated caspase-3 and caspase-7 are located to the vicinity of the mitochondria in CSF1-treated human monocytes. Active caspase-7 cleaves p47PHOX at aspartate 34, which promotes the formation of the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase complex NOX2 and the production of cytosolic superoxide anions. Monocyte response to CSF-1 is altered in patients with a chronic granulomatous disease, which are constitutively defective in NOX2. Both caspase-7 down-regulation and radical oxygen species scavenging decrease the migration of CSF-1-induced macrophages. Inhibition or deletion of caspases prevents the development of lung fibrosis in mice exposed to bleomycin. Altogether, a non-conventional pathway that involves caspases and activates NOX2 is involved in CSF1-driven monocyte differentiation and could be therapeutically targeted to modulate macrophage polarization in damaged tissues.


Assuntos
Caspases , Fator Estimulador de Colônias de Macrófagos , Humanos , Animais , Camundongos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Caspase 7/metabolismo , Caspases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , NADPH Oxidases/metabolismo , Monócitos/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(3): e2209184120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36626553

RESUMO

Monocytes play a key role in innate immunity by eliminating pathogens, releasing high levels of cytokines, and differentiating into several cell types, including macrophages and dendritic cells. Similar to other phagocytes, monocytes produce superoxide anions through the NADPH oxidase complex, which is composed of two membrane proteins (p22phox and gp91phox/NOX2) and four cytosolic proteins (p47phox, p67phox, p40phox and Rac1). The pathways involved in NADPH oxidase activation in monocytes are less known than those in neutrophils. Here, we show that p22phox is associated with Rho-associated coiled-coil kinase 2 (ROCK2) in human monocytes but not neutrophils. This interaction occurs between the cytosolic region of p22phox (amino acids 132 to 195) and the coiled-coil region of ROCK2 (amino acids 400 to 967). Interestingly, ROCK2 does not phosphorylate p22phox, p40phox, p67phox, or gp91phox in vitro but phosphorylates p47phox on Ser304, Ser315, Ser320 and Ser328. Furthermore, KD025, a selective inhibitor of ROCK2, inhibited reactive oxygen species (ROS) production and p47phox phosphorylation in monocytes. Specific inhibition of ROCK2 expression in THP1-monocytic cell line by siRNA inhibited ROS production. These data show that ROCK2 interacts with p22phox and phosphorylates p47phox, and suggest that p22phox could be a shuttle for ROCK2 to allow p47phox phosphorylation and NADPH oxidase activation in human monocytes.


Assuntos
Monócitos , NADPH Oxidases , Quinases Associadas a rho , Humanos , Aminoácidos , Monócitos/metabolismo , NADPH Oxidases/metabolismo , Fosfoproteínas/metabolismo , Espécies Reativas de Oxigênio , Quinases Associadas a rho/metabolismo
10.
Hepatology ; 77(4): 1348-1365, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35971873

RESUMO

BACKGROUND AND AIMS: Hepatitis B virus (HBV) infection causes oxidative stress (OS) and alters mitochondria in experimental models. Our goal was to investigate whether HBV might alter liver mitochondria also in humans, and the resulting mitochondrial stress might account for the progression of fibrosis in chronic hepatitis B (CHB). APPROACH AND RESULTS: The study included 146 treatment-naïve CHB mono-infected patients. Patients with CHB and advanced fibrosis (AF) or cirrhosis (F3-F4) were compared to patients with no/mild-moderate fibrosis (F0-F2). Patients with CHB were further compared to patients with chronic hepatitis C (CHC; n = 33), nonalcoholic steatohepatatis (NASH; n = 12), and healthy controls ( n = 24). We detected oxidative damage to mitochondrial DNA (mtDNA), including mtDNA strand beaks, and identified multiple mtDNA deletions in patients with F3-F4 as compared to patients with F0-F2. Alterations in mitochondrial function, mitochondrial unfolded protein response, biogenesis, mitophagy, and liver inflammation were observed in patients with AF or cirrhosis associated with CHB, CHC, and NASH. In vitro , significant increases of the mitochondrial formation of superoxide and peroxynitrite as well as mtDNA damage, nitration of the mitochondrial respiratory chain complexes, and impairment of complex I occurred in HepG2 cells replicating HBV or transiently expressing hepatitits B virus X protein. mtDNA damage and complex I impairment were prevented with the superoxide-scavenging Mito-Tempo or with inducible nitric oxide synthase (iNOS)-specific inhibitor 1400 W. CONCLUSIONS: Our results emphasized the importance of mitochondrial OS, mtDNA damage, and associated alterations in mitochondrial function and dynamics in AF or cirrhosis in CHB and NASH. Mitochondria might be a target in drug development to stop fibrosis progression.


Assuntos
Hepatite B Crônica , Hepatite B , Hepatite C Crônica , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatite C Crônica/complicações , Hepatite C Crônica/genética , Superóxidos , Cirrose Hepática/complicações , Fibrose , Vírus da Hepatite B/genética , Hepatite B/complicações , DNA Mitocondrial , Mitocôndrias
11.
Gut ; 72(6): 1081-1092, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36167663

RESUMO

OBJECTIVES: Inflammatory bowel disease (IBD) results from a combination of genetic predisposition, dysbiosis of the gut microbiota and environmental factors, leading to alterations in the gastrointestinal immune response and chronic inflammation. Caspase recruitment domain 9 (Card9), one of the IBD susceptibility genes, has been shown to protect against intestinal inflammation and fungal infection. However, the cell types and mechanisms involved in the CARD9 protective role against inflammation remain unknown. DESIGN: We used dextran sulfate sodium (DSS)-induced and adoptive transfer colitis models in total and conditional CARD9 knock-out mice to uncover which cell types play a role in the CARD9 protective phenotype. The impact of Card9 deletion on neutrophil function was assessed by an in vivo model of fungal infection and various functional assays, including endpoint dilution assay, apoptosis assay by flow cytometry, proteomics and real-time bioenergetic profile analysis (Seahorse). RESULTS: Lymphocytes are not intrinsically involved in the CARD9 protective role against colitis. CARD9 expression in neutrophils, but not in epithelial or CD11c+cells, protects against DSS-induced colitis. In the absence of CARD9, mitochondrial dysfunction increases mitochondrial reactive oxygen species production leading to the premature death of neutrophilsthrough apoptosis, especially in oxidative environment. The decreased functional neutrophils in tissues might explain the impaired containment of fungi and increased susceptibility to intestinal inflammation. CONCLUSION: These results provide new insight into the role of CARD9 in neutrophil mitochondrial function and its involvement in intestinal inflammation, paving the way for new therapeutic strategies targeting neutrophils.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Camundongos , Animais , Neutrófilos/metabolismo , Sobrevivência Celular , Colite/induzido quimicamente , Colite/prevenção & controle , Inflamação/metabolismo , Camundongos Knockout , Mitocôndrias/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Proteínas Adaptadoras de Sinalização CARD/metabolismo
12.
Blood ; 139(16): 2512-2522, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35108370

RESUMO

Superoxide production by the phagocyte reduced NAD phosphate (NADPH) oxidase is essential for innate immunity as shown in chronic granulomatous disease (CGD), an immunodeficiency disease resulting from mutations in 1 of its genes. The NADPH oxidase is composed of 2 membrane proteins (gp91phox/NOX2 and p22phox) and 4 cytosolic proteins (p47phox, p67phox, p40phox, and Rac1/2). The phosphorylation of p47phox is required for NADPH oxidase activation in cells. As p47phox and p67phox can form a tight complex in cells, we hypothesized that p67phox could regulate p47phox phosphorylation. To investigate this hypothesis, we used phospho-specific antibodies against 5 major p47phox-phosphorylated sites (Ser304, Ser315, Ser320, Ser328, and Ser345) and neutrophils from healthy donors and from p67phox-/- CGD patients. Results showed that formyl-methionyl-leucyl-phenylalanine and phorbol myristate acetate induced a time- and a concentration-dependent phosphorylation of p47phox on Ser304, Ser315, Ser320, and Ser328 in healthy human neutrophils. Interestingly, in neutrophils and Epstein-Barr virus-transformed B lymphocytes from p67phox-/- CGD patients, phosphorylation of p47phox on serine residues was dramatically reduced. In COSphox cells, the presence of p67phox led to increased phosphorylation of p47phox. In vitro studies showed that recombinant p47phox was phosphorylated on Ser304, Ser315, Ser320, and Ser328 by different PKC isoforms and the addition of recombinant p67phox alone or in combination with p40phox potentiated this process. Thus, p67phox and p40phox are required for optimal p47phox phosphorylation on Ser304, Ser315, Ser320, and Ser328 in intact cells. Therefore, p67phox and p40phox are novel regulators of p47phox-phosphorylation.


Assuntos
Infecções por Vírus Epstein-Barr , Doença Granulomatosa Crônica , Ativação Enzimática , Infecções por Vírus Epstein-Barr/metabolismo , Doença Granulomatosa Crônica/genética , Herpesvirus Humano 4/metabolismo , Humanos , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação
13.
Biomedicines ; 10(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35203528

RESUMO

Metformin (1,1-dimethylbiguanide hydrochloride) is the most commonly used drug to treat type II diabetic patients. It is believed that this drug has several other beneficial effects, such as anti-inflammatory and anticancer effects. Here, we wanted to evaluate the effect of metformin on the production of reactive oxygen species (ROS) by human macrophages. Macrophages are generated in vivo from circulating monocytes depending on the local tissue environment. In vitro proinflammatory macrophages (M1) and anti-inflammatory macrophages (M2) can be generated by culturing monocytes in the presence of different cytokines, such as GM-CSF or M-CSF, respectively. We show that metformin selectively inhibited human monocyte differentiation into proinflammatory macrophages (M1) without inhibiting their differentiation into anti-inflammatory macrophages (M2). Moreover, we demonstrate that, in response to LPS, M2 macrophages produced ROS, which could be very harmful for nearby tissues, and metformin inhibited this process. Interestingly, metformin with LPS induced activation of the adenosine-monophosphate-activated protein kinase (AMPK) and pharmacological activation of AMPK by AICAR, a known AMPK activator, decreased ROS production, whereas the deletion of AMPK in mice dramatically enhanced ROS production in different types of immune cells. These results suggest that metformin exhibits anti-inflammatory effects by inhibiting the differentiation of human monocytes into M1 macrophages and by limiting ROS production by macrophages via the activation of AMPK.

14.
Cell Mol Gastroenterol Hepatol ; 13(4): 1073-1093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35031518

RESUMO

BACKGROUND & AIMS: NADPH oxidase 1 (NOX1) has emerged as a prime regulator of intestinal mucosa immunity and homeostasis. Dysregulation of NOX1 may cause inflammatory bowel disease (IBD). It is not clear how NOX1 is regulated in vivo under inflammatory conditions. We studied the role of CK2 in this process. METHODS: The NOX1 organizer subunit, NADPH oxidase organizer 1 (NOXO1), was immunoprecipitated from cytokine-treated colon epithelial cells, and bound proteins were identified by mass spectrometry analysis. Sites on NOXO1 phosphorylated by CK2 were identified by nanoscale liquid chromatography coupled to tandem mass spectrometry. NOX1 activity was determined in colon epithelial cells and colonoids in the presence or absence of CX-4945, a CK2 specific inhibitor. Acute colitis was induced by administration of trinitrobenzenesulfonic acid in mice treated or not with CX-4945. Colon tissues were analyzed by histologic examination, quantitative polymerase chain reaction, and Western blots. CK2 activity, markers of inflammation, and oxidative stress were assessed. RESULTS: We identified CK2 as a major partner of NOXO1 in colon epithelial cells under inflammatory conditions. CK2 directly binds NOXO1 at the C-terminus containing the Phox homology domain and phosphorylates NOXO1 on several sites. CX-4945 increased ROS generation by NOX1 in human colon epithelial cells and organoids. Strikingly, CK2 activity was reduced in trinitrobenzenesulfonic acid-induced acute colitis, and CX-4945 exacerbated colitis inflammation as shown by increased levels of CXCL1, ROS generation, lipid peroxidation, and colon damage. CONCLUSIONS: The ubiquitous protein kinase CK2 limits NOX1 activity via NOXO1 binding and phosphorylation in colonic epithelial cells and lessens experimental colitis. Loss of CK2 activity during acute colitis results in excessive ROS production, contributing to the pathogenesis. Strategies to activate CK2 could be an effective novel therapeutic approach in IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Caseína Quinase II/efeitos adversos , Colite/induzido quimicamente , Inflamação , Camundongos , NADPH Oxidase 1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Trinitrobenzenossulfônico/efeitos adversos
15.
Eur Respir J ; 59(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34503986

RESUMO

INTRODUCTION: Pulmonary alveolar proteinosis related to mutations in the methionine tRNA synthetase (MARS1) gene is a severe, early-onset disease that results in death before the age of 2 years in one-third of patients. It is associated with a liver disease, growth failure and systemic inflammation. As methionine supplementation in yeast models restored normal enzymatic activity of the synthetase, we studied the tolerance, safety and efficacy of daily oral methionine supplementation in patients with severe and early disease. METHODS: Four patients received methionine supplementation and were followed for respiratory, hepatic, growth and inflammation-related outcomes. Their course was compared to those of historical controls. Reactive oxygen species production by patient monocytes before and after methionine supplementation was also studied. RESULTS: Methionine supplementation was associated with respiratory improvement, clearance of the extracellular lipoproteinaceous material and discontinuation of whole-lung lavage in all patients. The three patients who required oxygen or noninvasive ventilation could be weaned off within 60 days. In addition, liver dysfunction, inflammation and growth delay improved or resolved. At a cellular level, methionine supplementation normalised the production of reactive oxygen species by peripheral monocytes. CONCLUSION: Methionine supplementation was associated with important improvements in children with pulmonary alveolar proteinosis related to mutations in the MARS1 gene. This study paves the way for similar strategies for other tRNA synthetase deficiencies.


Assuntos
Suplementos Nutricionais , Metionina , Insuficiência de Múltiplos Órgãos , Proteinose Alveolar Pulmonar , Lavagem Broncoalveolar/métodos , Criança , Pré-Escolar , Humanos , Inflamação , Metionina/uso terapêutico , Metionina tRNA Ligase/genética , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Proteinose Alveolar Pulmonar/tratamento farmacológico , Proteinose Alveolar Pulmonar/genética , Espécies Reativas de Oxigênio
16.
Biomedicines ; 9(9)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34572316

RESUMO

Neutrophils are key cells of the innate immune and inflammatory responses. They are the first blood cells to migrate to the infection site where they release high amounts of reactive oxygen species (ROS) and several peptides and enzymes required for microbial killing. However, excessive neutrophil activation can induce tissue injury participating in inflammation, thus the characterization of the enzymes involved in neutrophil activation could help to identify new pharmacological targets to treat inflammation. The prolyl-isomerase Pin1 is a ubiquitous enzyme involved in several functions, however, its role in neutrophil functions is less known. In this study, we show that the bacterial peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP or fMLF), a G-protein coupled receptor (GPCR) agonist-induced Pin1 activation in human neutrophils. PiB and juglone, two Pin1 inhibitors inhibited Pin1 activity in neutrophils and consequently inhibited fMLP-induced chemotaxis and -degranulation of azurophil and specific granules as measured by myeloperoxidase and neutrophil gelatinase-associated lipocalin (NGAL) release respectively. We also showed that PiB inhibited TNFα + fMLP-induced superoxide production, confirming the effect of juglone. These data show that inhibitors of Pin1 impaired key pro-inflammatory neutrophil functions elicited by GPCR activation and suggest that Pin1 could control neutrophil inflammatory functions.

17.
Blood ; 138(9): 744-746, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34473236
18.
J Exp Med ; 218(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34264265

RESUMO

Patients with autosomal recessive protein kinase C δ (PKCδ) deficiency suffer from childhood-onset autoimmunity, including systemic lupus erythematosus. They also suffer from recurrent infections that overlap with those seen in patients with chronic granulomatous disease (CGD), a disease caused by defects of the phagocyte NADPH oxidase and a lack of reactive oxygen species (ROS) production. We studied an international cohort of 17 PKCδ-deficient patients and found that their EBV-B cells and monocyte-derived phagocytes produced only small amounts of ROS and did not phosphorylate p40phox normally after PMA or opsonized Staphylococcus aureus stimulation. Moreover, the patients' circulating phagocytes displayed abnormally low levels of ROS production and markedly reduced neutrophil extracellular trap formation, altogether suggesting a role for PKCδ in activation of the NADPH oxidase complex. Our findings thus show that patients with PKCδ deficiency have impaired NADPH oxidase activity in various myeloid subsets, which may contribute to their CGD-like infectious phenotype.


Assuntos
Infecções/genética , Proteína Quinase C-delta/genética , Explosão Respiratória/fisiologia , Linfócitos B/enzimologia , Feminino , Humanos , Lactente , Infecções/tratamento farmacológico , Infecções/etiologia , Infecções/patologia , Masculino , NADPH Oxidases/metabolismo , Linhagem , Fagocitose , Fosforilação , Isoformas de Proteínas , Proteína Quinase C-delta/deficiência , Proteína Quinase C-delta/metabolismo
19.
Cell Host Microbe ; 29(8): 1277-1293.e6, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34214493

RESUMO

Immune deactivation of phagocytes is a central event in the pathogenesis of sepsis. Herein, we identify a master regulatory role of IL-6 signaling on LC3-associated phagocytosis (LAP) and reveal that uncoupling of these two processes during sepsis induces immunoparalysis in monocytes/macrophages. In particular, we demonstrate that activation of LAP by the human fungal pathogen Aspergillus fumigatus depends on ERK1/2-mediated phosphorylation of p47phox subunit of NADPH oxidase. Physiologically, autocrine IL-6/JAK2/Ninein axis orchestrates microtubule organization and dynamics regulating ERK recruitment to the phagosome and LC3+ phagosome (LAPosome) formation. In sepsis, loss of IL-6 signaling specifically abrogates microtubule-mediated trafficking of ERK, leading to defective activation of LAP and impaired killing of bacterial and fungal pathogens by monocytes/macrophages, which can be selectively restored by IL-6 supplementation. Our work uncovers a molecular pathway linking IL-6 signaling with LAP and provides insight into the mechanisms underlying immunoparalysis in sepsis.


Assuntos
Interleucina-6/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fagocitose/imunologia , Transdução de Sinais , Aspergillus fumigatus/metabolismo , Citocinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Humanos , Janus Quinase 2/metabolismo , Macrófagos , Monócitos , Proteínas Nucleares/metabolismo , Fagócitos , Fagocitose/fisiologia , Sepse/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-34249119

RESUMO

Neutrophils play a pivotal role in innate immunity and in the inflammatory response. Neutrophils are very motile cells that are rapidly recruited to the inflammatory site as the body first line of defense. Their bactericidal activity is due to the release into the phagocytic vacuole, called phagosome, of several toxic molecules directed against microbes. Neutrophil stimulation induces release of this arsenal into the phagosome and induces the assembly at the membrane of subunits of the NAPDH oxidase, the enzyme responsible for the production of superoxide anion that gives rise to other reactive oxygen species (ROS), a process called respiratory burst. Altogether, they are responsible for the bactericidal activity of the neutrophils. Excessive activation of neutrophils can lead to extensive release of these toxic agents, inducing tissue injury and the inflammatory reaction. Envenomation, caused by different animal species (bees, wasps, scorpions, snakes etc.), is well known to induce a local and acute inflammatory reaction, characterized by recruitment and activation of leukocytes and the release of several inflammatory mediators, including prostaglandins and cytokines. Venoms contain several molecules such as enzymes (phospholipase A2, L-amino acid oxidase and proteases, among others) and peptides (disintegrins, mastoporan, parabutoporin etc.). These molecules are able to stimulate or inhibit ROS production by neutrophils. The present review article gives a general overview of the main neutrophil functions focusing on ROS production and summarizes how venoms and venom molecules can affect this function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA