RESUMO
The photocatalytic activity of titanium dioxide (TiO2) nanoparticles toward hydrogen generation can be significantly improved via the loading of various metals e.g., Ru, Co, Ni as co-catalysts. The metal co-catalysts are loaded into TiO2 nanoparticles via different deposition methods; incipient wet impregnation (Imp), hydrothermal (HT), or photocatalytic deposition (PCD). Among all of the tested materials, 0.1 wt% Ru-TiO2 (Imp) provided the highest initial hydrogen catalytic rate of 23.9 mmol h-1 g-1, compared to 10.82 and 16.55 mmol h-1 g-1 for 0.3 wt% Ni-TiO2 (Imp) and 0.3 wt% Co-TiO2 (Imp), respectively. The loading procedures, co-catalyst metals type, and their loading play a significant role in elevating the photocatalytic activity of pristine TiO2 semiconductors toward hydrogen generation. Redox transition metals e.g., Co and Ni exhibit comparable photocatalytic performance to expensive elements such as Ru.
RESUMO
BACKGROUND: Hydrogen is a promising source of alternative energy. Fermentative production is more feasible because of its high hydrogen generation rate, simple operating conditions, and utilization of various organic wastes as substrates. The most significant constraint for biohydrogen production is supplying it at a low cost with fewer impurities. RESULTS: Leaf biomass of Calotropis procera was used as a feedstock for a dark fermentative production of hydrogen by Bacillus coagulans AH1 (MN923076). The optimum operation conditions for biohydrogen production were 5.0% substrate concentrationand pH 9.0, at 35 °C. In which the biohydrogen yield was 3.231 mmol H2/g dry biomass without any pretreatments of the biomass. A freshwater microalga Oscillatroia sp was used for upgrading of the produced biohydrogen. It sequestrated 97 and 99% % of CO2 from the gas mixture when it was cultivated in BG11 and BG11-N media, respectively After upgrading process, the residual microalgal cells exhibited 0.21mg/mL of biomass yield,high content of chlorophyll-a (4.8 µg/mL) and carotenoid (11.1 µg/mL). In addition to Oscillatroia sp residual biomass showed a lipid yield (7.5-8.7%) on the tested media. CONCLUSION: Bacillus coagulans AH1 is a promising tool for biohydrogen production avoiding the drawbacks of biomass pretreatment. Oscillatroia sp is encouraged as a potent tool for upgrading and purification of biohydrogen. These findings led to the development of a multiproduct biorefinery with zero waste that is more economically sustainable.
Assuntos
Bacillus coagulans , Microalgas , Biomassa , Fermentação , HidrogênioRESUMO
Herein, we report the modification of TiO2 nanostructures with two different metal chalcogenides (CuS or MoS2). The effect of the preparation scheme (hydrothermal and coprecipitation methods) and the mass ratio of metal chalcogenides were investigated. The as-synthesized photocatalyst nanocomposites were fully characterized by various techniques. Moreover, the photo/electrochemical analysis were performed to investigate the photoelectric properties and photocatalytic mechanism. The photocatalytic performance was evaluated using two test reactions. In the case of H2 generation via water splitting, it was found that 0.5 wt% CuS-TiO2 synthesized via the coprecipitation method exhibited an initial hydrogen evolution rate (HER) of 2.95 mmol h-1 g-1. While, the optimized 3 wt% MoS2-TiO2 synthesized by the hydrothermal method, showed an HER of 1.7 mmol h-1 g-1. Moreover, the degradation efficiency of methylene blue dye was 98% under UV-Vis light irradiation within 2 h over 0.5 CT_PP and 3MT_HT. Under visible irradiation, the degradation efficiency was 100% and 96% for 3MT_PP and 0.5CT_HT in the presence of H2O2, respectively. This study has proven that metal chalcogenides can act as effective, stable, and low-cost bifunctional co-catalysts to enhance the overall photocatalytic performance.
RESUMO
4-Nitrophenol (4-NP) is reported to originate disadvantageous effects on the human body collected from industrial pollutants; therefore, the detoxification of 4-NP in aqueous contamination is strongly recommended. In this study, the heterojunction mesoporous α-Fe2O3/TiO2 modulated with diverse Ag percentages has been constructed via a sol-gel route in the occurrence of a soft template P123. The formation of biphasic crystalline TiO2 anatase and brookite phases has been successfully achieved with the average 10 nm particle sizes. The photo/-catalytic reduction of 4-NP has been performed utilizing NaBH4 as a reducing agent with and without visible illumination. All Ag/Fe2O3/TiO2 nanocomposites exhibited significantly higher photo/-catalytic reduction efficiency than pure Fe2O3, TiO2 NPs, and Fe2O3/TiO2 nanocomposite. 2.5% Ag/Fe2O3/TiO2 nanocomposite was considered the highest and superior photocatalytic reduction efficiency, and it almost achieved 98% after 9 min. Interestingly, the photocatalytic reduction of 4-NP was accelerated 9 times higher than the catalytic reduction over 2.5% Ag/Fe2O3/TiO2; its rate constant value was 709 and 706 times larger than pure TiO2 and Fe2O3 NPs, respectively. The enhanced photocatalytic reduction ability of Ag/Fe2O3/TiO2 nanocomposite might be referred to as significantly providing visible light absorption and a large surface area, and it can upgrade the effective separation and mobility of electron holes. The stability of the synthesized catalysts exhibited that the obtained catalysts can undergo a slight decrease in reduction efficiency after five successive cycles. This approach highlights a novel route for constructing ternary nanocomposite systems with high photo/-catalytic ability.
Assuntos
Luz , Prata , Humanos , Prata/química , Titânio/químicaRESUMO
The resources of clean water worldwide are very limited, and climate change is already affecting the available supplies. Therefore, developing a low-cost, highly efficient, and recyclable adsorbent to upgrade water quality has become an essential task. Herein, we report the fabrication of activated carbon (AC) adsorbents derived from lignocellulosic wastes. Both physical and chemical activation were investigated to modify the surface texture properties. The results indicated that increasing the activation temperature, whether physically or chemically, increases the specific surface area (SBET). On the contrary, increasing the amount of the chemical activating agent significantly decreases the SBET values. The SBET of 1771, 2120, and 2490 m2 g-1 were obtained for water vapor, K2CO3 and KOH, at activation temperatures of 950 °C, 800 °C, and 800 °C, respectively. Methylene blue (MB) and phenol were used as adsorbates for the adsorption experiment. Adsorption of methylene blue dye revealed the ability of the water activated carbon to remove more than 95% of the dye (100 ppm) within 5 min with an adsorption capacity of 148.8 mg g-1. For phenol adsorption, Several parameters were investigated, including initial concentration (50-250 ppm), pH (2-10), contact time (5-60 min), and temperature (25-45 °C). The highest adsorption capacity of phenol achieved was 158.9 mg g-1. The kinetics of adsorption of phenol was better described by pseudo-second-order reaction while the isotherm process using Langmuir model. This study presents a roadmap for conversion of lignocellulosic biomass waste into highly efficient porous carbon adsorbents.
Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Agricultura , Carvão Vegetal/química , Lignina , Azul de Metileno/química , Fenol , Poluentes Químicos da Água/análiseRESUMO
Fischer-Tropsch has become an indispensable choice in the gas-to-liquid conversion reactions to produce a wide range of petrochemicals using recently emerging biomass or other types of feedstock such as coal or natural gas. Herein we report the incorporation of novel Cu nanoparticles with two Fischer-Tropsch synthesis (FTS) catalytic systems, Fe/reduced graphene oxide (rGO) and Fe-Mn/rGO, to evaluate their FTS performance and olefin productivity in two types of reactors: slurry-bed reactor (SBR) and fixed-bed reactor (FBR). Four catalysts were compared and investigated, namely Fe, FeCu7, FeMn10Cu7, and FeMn16, which were highly dispersed over reduced graphene oxide nanosheets. The catalysts were first characterized by transmission electron microscopy (TEM), nitrogen physisorption, X-ray fluorescence (XRF), X-ray diffraction (XRD), and H-TPR techniques. In the SBR, Cu enhanced olefinity only when used alone in FeCu7 without Mn promotion. When used with Mn, the olefin yield was not changed, but light olefins decreased slightly at the expense of heavier olefins. In the FBR system, Cu as a reduction promoter improved the catalyst activity. It increased the olefin yield mainly due to increased activity, even if the CO2 decreased by the action of Cu promoters. The olefinity of the product was improved by Cu promotion but it did not exceed the landmark made by FeMn16 at 320 °C. The paraffinity was also enhanced by Cu promotion especially in the presence of Mn, indicating a strong synergistic effect. Cu was found to be better than Mn in enhancing the paraffin yield, while Mn is a better olefin yield enhancer. Finally, Cu promotion was found to enhance the selectivity towards light olefins C2-4. This study gives a deep insight into the effect of different highly dispersed FTS catalyst systems on the olefin hydrocarbon productivity and selectivity in two major types of FTS reactors.
RESUMO
The current study provides a novel insight into the role of synergism of the changes in Mg2+/ Al3+ in the best catalytic activity of indol-3-yl derivatives. A series of Co-Mg-Al layered triple hydroxides (LTHs) catalysts were produced by altering the Al3+/Mg2+ ratio with respect to Co2+. The physicochemical properties of LTHs were well characterized by ICP-AES, XRD, FTIR, FE-SEM, BET, Zeta-sizer, and VSM. The results show that the sample CMA4 (Co2+:Mg2+:Al3+ 2:4:4) is an exception to the physicochemical characteristics of the produced Co-Mg-Al LTHs, which is due to the synergism between the changes in Mg2+ and Al3+. To the best of our knowledge, this is the first study to report the synthesis of indol-3-yl derivatives from indole-3-carbaldehyde using Co-Mg-Al LTHs as highly efficient heterogeneous catalysts, which is an extremely appealing path. The selectivity of the synthesis was studied by condensing various nucleophiles through the one-pot method that established superior reactivity under mild conditions. Notably, the results show that the Co-Mg-Al LTHs system exhibited an extraordinarily catalytic activity, with the highest yield (98%) being obtained under the following optimal conditions: the concentration of Co-Mg-Al LTHs = 5 mol%, 30 min., water/ethanol as solvent. Furthermore, the reusable studies exhibited that the catalysts were found to be stable and reusable for up to six cycles without substantial loss of catalytic activity. Finally, a plausible reaction mechanism of the Co-Mg-Al LTHs system for indol-3-yl derivatives was put forward according to our comprehensive analysis. Our work illuminates a cheap and flexible strategy for the synthesis of indol-3-yl derivatives using Co-Mg-Al LTHs.
RESUMO
This study aims at examining the use of an advanced meso-scale continuous-flow photochemical reactor for the photocatalytic conversion of CO2 with water into fuel over TiO2 (P25), Ag/TiO2, and Ag/TiO2/RGO catalysts. The silver loaded photocatalysts were prepared by one-step process via hydrothermal method. The prepared photocatalysts were characterized by various characterization techniques in order to identify the morphological, chemical, physical, and optical properties. The photocatalytic activity of the as-prepared catalysts was firstly examined by the photoelectrochemical (PEC) measurements and secondly by the photocatalytic reduction of CO2 in the proposed setup. Liquid products were analyzed using gas chromatography-mass spectrometry (GC-MS) and total organic carbon (TOC) techniques. It was found that the ternary composite revealed an outstanding performance towards CO2 photocatalytic reduction, where its selectivity was directed towards methanol production. The incorporation of graphene nanosheets enhanced the photocatalytic reduction of CO2 by 3.3 and 9.4 times compared with Ag/TiO2 and bare TiO2, respectively, using the proposed photochemical reactor in a continuous mode. This study sheds the light on a novel type of a photocatalytic reactor where CO2 conversion over Ag/TiO2/RGO ternary composite was evaluated. A meso-scale continuous-flow photochemical reactor.
Assuntos
Grafite , Dióxido de Carbono , Prata , TitânioRESUMO
Incorporation of conducting polymers (CPs) with TiO2 is considered a promising pathway toward the fabrication of highly efficient non-metal based photocatalysts. Herein, we report the fabrication of TiO2@polyaniline, TiO2@polypyrrole, and TiO2@poly(3,4-ethylenedioxythiophene) photocatalyst heterostructures via the facile wet incipient impregnation method. The mass ratios of CPs in the composites were optimized. The structure, morphology, optical and surface texture of the samples were characterized by XRD, TEM, TGA, DRS, and N2-physisorption techniques. The TiO2@2PEDOT, TiO2@2PPy, and TiO2@5PAn composites were found to exhibit the highest H2 evolution rate (HER) of 1.37, 2.09, and 3.1 mmol h-1 g-1, respectively. Compared to bare TiO2, the HER was significantly enhanced by 16, 24, and 36-fold, respectively. Photoelectrochemical measurements (CV, CA and EIS) were conducted, to evaluate the photoelectric properties of the synthesized composites and assist in understanding the photocatalytic mechanism. The deposition method plays a key-role in forming the photocatalyst/CP interface. This simple impregnation route was found to provide an excellent interface for charge transfer between composite components compared to chemisorption and in situ polymerization methods. This study sheds light on the promising effect of CP incorporation with semiconductor photocatalysts, as a cheap and efficient matrix, on photocatalytic performance.
RESUMO
Natural products continued to be the treasure trove for the discovery of anticancer drugs. The activity of certain natural products significantly increased with the use of novel drug delivery systems (DDS). Aiming to improve the activity of a natural cytotoxic agent; Sesamol, it was loaded onto cadmium sulfide (CdS) quantum dots (QDs) modified chitosan (CTS). The formed complex Sesamol-CdS@CTS was characterized using X-ray diffraction, UV-Vis absorption spectroscopy, thermogravimetric analysis, dynamic light scattering, Zeta-potential, Fourier transform infrared spectroscopy, fluorescence emission, high resolution transmission electron microscopy, and selected area electron diffraction. The concentration effect of Cd2+ and chitosan on the particle size of CdS QDs was investigated. The cytotoxic activity assay showed that Sesamol-CdS@CTS was more effective against cancer cells compared to the drug alone. The results showed that the half maximal inhibitory concentration values (IC50) of CdS@CTS, Sesamol, and Sesamol-CdS@CTS were 1730 ± 54, 495 ± 16.4, and 117 ± 3.2 µg/mL, respectively. Our results indicated that CdS@CTS exhibited high loading efficiency, and can be used for drug delivery.