Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
JCI Insight ; 9(17)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39088276

RESUMO

Mitochondrial trifunctional protein (TFP) deficiency is an inherited metabolic disorder leading to a block in long-chain fatty acid ß-oxidation. Mutations in HADHA and HADHB, which encode the TFP α and ß subunits, respectively, usually result in combined TFP deficiency. A single common mutation, HADHA c.1528G>C (p.E510Q), leads to isolated 3-hydroxyacyl-CoA dehydrogenase deficiency. TFP also catalyzes a step in the remodeling of cardiolipin (CL), a phospholipid critical to mitochondrial membrane stability and function. We explored the effect of mutations in TFP subunits on CL and other phospholipid content and composition and the consequences of these changes on mitochondrial bioenergetics in patient-derived fibroblasts. Abnormalities in these parameters varied extensively among different fibroblasts, and some cells were able to maintain basal oxygen consumption rates similar to controls. Although CL reduction was universally identified, a simultaneous increase in monolysocardiolipins was discrepant among cells. A similar profile was seen in liver mitochondria isolates from a TFP-deficient mouse model. Response to new potential drugs targeting CL metabolism might be dependent on patient genotype.


Assuntos
Cardiolipinas , Metabolismo Energético , Fibroblastos , Erros Inatos do Metabolismo Lipídico , Subunidade alfa da Proteína Mitocondrial Trifuncional , Cardiolipinas/metabolismo , Animais , Humanos , Camundongos , Subunidade alfa da Proteína Mitocondrial Trifuncional/metabolismo , Subunidade alfa da Proteína Mitocondrial Trifuncional/genética , Metabolismo Energético/genética , Fibroblastos/metabolismo , Erros Inatos do Metabolismo Lipídico/metabolismo , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/patologia , Subunidade beta da Proteína Mitocondrial Trifuncional/metabolismo , Subunidade beta da Proteína Mitocondrial Trifuncional/genética , Mitocôndrias/metabolismo , Mutação , Proteína Mitocondrial Trifuncional/deficiência , Proteína Mitocondrial Trifuncional/metabolismo , Proteína Mitocondrial Trifuncional/genética , Rabdomiólise/metabolismo , Rabdomiólise/genética , Rabdomiólise/patologia , Miopatias Mitocondriais/metabolismo , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/patologia , Consumo de Oxigênio , Masculino , Modelos Animais de Doenças , Lisofosfolipídeos , Cardiomiopatias , Doenças do Sistema Nervoso
2.
J Inherit Metab Dis ; 47(2): 220-229, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38375550

RESUMO

Carbamoyl phosphate synthetase 1 (CPS1) and ornithine transcarbamylase (OTC) deficiencies are rare urea cycle disorders, which can lead to life-threatening hyperammonemia. Liver transplantation (LT) provides a cure and offers an alternative to medical treatment and life-long dietary restrictions with permanent impending risk of hyperammonemia. Nevertheless, in most patients, metabolic aberrations persist after LT, especially low plasma citrulline levels, with questionable clinical impact. So far, little is known about these alterations and there is no consensus, whether l-citrulline substitution after LT improves patients' symptoms and outcomes. In this multicentre, retrospective, observational study of 24 patients who underwent LT for CPS1 (n = 11) or OTC (n = 13) deficiency, 25% did not receive l-citrulline or arginine substitution. Correlation analysis revealed no correlation between substitution dosage and citrulline levels (CPS1, p = 0.8 and OTC, p = 1). Arginine levels after liver transplantation were normal after LT independent of citrulline substitution. Native liver survival had no impact on mental impairment (p = 0.67). Regression analysis showed no correlation between l-citrulline substitution and failure to thrive (p = 0.611) or neurological outcome (p = 0.701). Peak ammonia had a significant effect on mental impairment (p = 0.017). Peak plasma ammonia levels correlate with mental impairment after LT in CPS1 and OTC deficiency. Growth and intellectual impairment after LT are not significantly associated with l-citrulline substitution.


Assuntos
Hiperamonemia , Transplante de Fígado , Doença da Deficiência de Ornitina Carbomoiltransferase , Humanos , Doença da Deficiência de Ornitina Carbomoiltransferase/cirurgia , Hiperamonemia/tratamento farmacológico , Citrulina , Carbamoil-Fosfato/metabolismo , Carbamoil-Fosfato/uso terapêutico , Amônia/metabolismo , Estudos Retrospectivos , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Arginina/uso terapêutico , Ornitina Carbamoiltransferase
3.
Sci Transl Med ; 15(692): eadf4086, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37075130

RESUMO

Glutaric aciduria type I (GA-1) is an inborn error of metabolism with a severe neurological phenotype caused by the deficiency of glutaryl-coenzyme A dehydrogenase (GCDH), the last enzyme of lysine catabolism. Current literature suggests that toxic catabolites in the brain are produced locally and do not cross the blood-brain barrier. In a series of experiments using knockout mice of the lysine catabolic pathway and liver cell transplantation, we uncovered that toxic GA-1 catabolites in the brain originated from the liver. Moreover, the characteristic brain and lethal phenotype of the GA-1 mouse model was rescued by two different liver-directed gene therapy approaches: Using an adeno-associated virus, we replaced the defective Gcdh gene or we prevented flux through the lysine degradation pathway by CRISPR deletion of the aminoadipate-semialdehyde synthase (Aass) gene. Our findings question the current pathophysiological understanding of GA-1 and reveal a targeted therapy for this devastating disorder.


Assuntos
Glutaril-CoA Desidrogenase , Lisina , Animais , Camundongos , Glutaril-CoA Desidrogenase/genética , Glutaril-CoA Desidrogenase/metabolismo , Lisina/metabolismo , Camundongos Knockout , Fígado/metabolismo
4.
Mol Genet Metab ; 138(3): 107525, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36796138

RESUMO

Glycogen storage disease type IV (GSD IV) is an ultra-rare autosomal recessive disorder caused by pathogenic variants in GBE1 which results in reduced or deficient glycogen branching enzyme activity. Consequently, glycogen synthesis is impaired and leads to accumulation of poorly branched glycogen known as polyglucosan. GSD IV is characterized by a remarkable degree of phenotypic heterogeneity with presentations in utero, during infancy, early childhood, adolescence, or middle to late adulthood. The clinical continuum encompasses hepatic, cardiac, muscular, and neurologic manifestations that range in severity. The adult-onset form of GSD IV, referred to as adult polyglucosan body disease (APBD), is a neurodegenerative disease characterized by neurogenic bladder, spastic paraparesis, and peripheral neuropathy. There are currently no consensus guidelines for the diagnosis and management of these patients, resulting in high rates of misdiagnosis, delayed diagnosis, and lack of standardized clinical care. To address this, a group of experts from the United States developed a set of recommendations for the diagnosis and management of all clinical phenotypes of GSD IV, including APBD, to support clinicians and caregivers who provide long-term care for individuals with GSD IV. The educational resource includes practical steps to confirm a GSD IV diagnosis and best practices for medical management, including (a) imaging of the liver, heart, skeletal muscle, brain, and spine, (b) functional and neuromusculoskeletal assessments, (c) laboratory investigations, (d) liver and heart transplantation, and (e) long-term follow-up care. Remaining knowledge gaps are detailed to emphasize areas for improvement and future research.


Assuntos
Doença de Depósito de Glicogênio Tipo IV , Doença de Depósito de Glicogênio , Doenças Neurodegenerativas , Pré-Escolar , Humanos , Doença de Depósito de Glicogênio Tipo IV/diagnóstico , Doença de Depósito de Glicogênio Tipo IV/genética , Doença de Depósito de Glicogênio Tipo IV/terapia , Doença de Depósito de Glicogênio/diagnóstico , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio/terapia , Glicogênio
5.
Mol Genet Metab Rep ; 31: 100856, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35782603

RESUMO

Introduction: Biotinidase synthesis is needed to recycle biotin for essential metabolic reactions. Biotinidase activity is lower than normal levels in advanced liver disease but is higher in hepatic glycogen storage disorders (GSDs), however the cause of this association remains unclear. Methods: In this study, biotinidase activity was measured in plasma samples from 45 individuals with hepatic GSDs; GSDI (a, b; n = 25) and GSD III (a, b; n = 20), complemented by a chart review to associate biotinidase activity levels with clinical laboratory and imaging findings known to be implicated in these GSDs. Results: Our findings showed variation in biotinidase activity levels among subjects with GSD I and III; biotinidase activity correlated positively with hypertriglyceridemia in subjects with GSD I (r = 0.47, P = 0.036) and GSD III (r = 0.58, P = 0.014), and correlated negatively with age (r = -0.50, P = 0.03) in patients with GSD III. Additionally, biotinidase activity was reduced, albeit within the normal range in subjects with evidence of fibrosis/cirrhosis, as compared to subjects with hepatomegaly with or without steatosis (P = 0.002). Discussions: These findings suggest that abnormal lipid metabolism in GSD I and III and progressive liver disease in GSD III may influence biotinidase activity levels. We suggest that a prospective, multi-center, longitudinal study designed to assess the significance of monitoring biotinidase activity in a larger cohort with hepatic GSDs is warranted to confirm this observation. Take-home message: Altered lipid metabolism and advancing liver fibrosis/cirrhosis may influence biotinidase activity levels in patients with hepatic glycogen storage disease. Thus, longitudinal monitoring of biotinidase activity, when combined with clinical and other biochemical findings may be informative.

6.
Mol Genet Metab Rep ; 29: 100821, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34820282

RESUMO

INTRODUCTION: A deficiency of glycogen debrancher enzyme in patients with glycogen storage disease type III (GSD III) manifests with hepatic, cardiac, and muscle involvement in the most common subtype (type a), or with only hepatic involvement in patients with GSD IIIb. OBJECTIVE AND METHODS: To describe longitudinal biochemical, radiological, muscle strength and ambulation, liver histopathological findings, and clinical outcomes in adults (≥18 years) with glycogen storage disease type III, by a retrospective review of medical records. RESULTS: Twenty-one adults with GSD IIIa (14 F & 7 M) and four with GSD IIIb (1 F & 3 M) were included in this natural history study. At the most recent visit, the median (range) age and follow-up time were 36 (19-68) and 16 years (0-41), respectively. For the entire cohort: 40% had documented hypoglycemic episodes in adulthood; hepatomegaly and cirrhosis were the most common radiological findings; and 28% developed decompensated liver disease and portal hypertension, the latter being more prevalent in older patients. In the GSD IIIa group, muscle weakness was a major feature, noted in 89% of the GSD IIIa cohort, a third of whom depended on a wheelchair or an assistive walking device. Older individuals tended to show more severe muscle weakness and mobility limitations, compared with younger adults. Asymptomatic left ventricular hypertrophy (LVH) was the most common cardiac manifestation, present in 43%. Symptomatic cardiomyopathy and reduced ejection fraction was evident in 10%. Finally, a urinary biomarker of glycogen storage (Glc4) was significantly associated with AST, ALT and CK. CONCLUSION: GSD III is a multisystem disorder in which a multidisciplinary approach with regular clinical, biochemical, radiological and functional (physical therapy assessment) follow-up is required. Despite dietary modification, hepatic and myopathic disease progression is evident in adults, with muscle weakness as the major cause of morbidity. Consequently, definitive therapies that address the underlying cause of the disease to correct both liver and muscle are needed.

7.
Am J Hum Genet ; 105(2): 384-394, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31256876

RESUMO

Proteins anchored to the cell surface via glycosylphosphatidylinositol (GPI) play various key roles in the human body, particularly in development and neurogenesis. As such, many developmental disorders are caused by mutations in genes involved in the GPI biosynthesis and remodeling pathway. We describe ten unrelated families with bi-allelic mutations in PIGB, a gene that encodes phosphatidylinositol glycan class B, which transfers the third mannose to the GPI. Ten different PIGB variants were found in these individuals. Flow cytometric analysis of blood cells and fibroblasts from the affected individuals showed decreased cell surface presence of GPI-anchored proteins. Most of the affected individuals have global developmental and/or intellectual delay, all had seizures, two had polymicrogyria, and four had a peripheral neuropathy. Eight children passed away before four years old. Two of them had a clinical diagnosis of DOORS syndrome (deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures), a condition that includes sensorineural deafness, shortened terminal phalanges with small finger and toenails, intellectual disability, and seizures; this condition overlaps with the severe phenotypes associated with inherited GPI deficiency. Most individuals tested showed elevated alkaline phosphatase, which is a characteristic of the inherited GPI deficiency but not DOORS syndrome. It is notable that two severely affected individuals showed 2-oxoglutaric aciduria, which can be seen in DOORS syndrome, suggesting that severe cases of inherited GPI deficiency and DOORS syndrome might share some molecular pathway disruptions.


Assuntos
Anormalidades Craniofaciais/etiologia , Glicosilfosfatidilinositóis/biossíntese , Glicosilfosfatidilinositóis/deficiência , Deformidades Congênitas da Mão/etiologia , Perda Auditiva Neurossensorial/etiologia , Deficiência Intelectual/etiologia , Manosiltransferases/genética , Doenças Metabólicas/etiologia , Mutação , Unhas Malformadas/etiologia , Doenças do Sistema Nervoso Periférico/etiologia , Convulsões/patologia , Adulto , Criança , Pré-Escolar , Anormalidades Craniofaciais/patologia , Feminino , Glicosilfosfatidilinositóis/genética , Deformidades Congênitas da Mão/patologia , Perda Auditiva Neurossensorial/patologia , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/patologia , Masculino , Doenças Metabólicas/patologia , Unhas Malformadas/patologia , Linhagem , Doenças do Sistema Nervoso Periférico/patologia , Convulsões/genética , Índice de Gravidade de Doença , Adulto Jovem
8.
Genet Med ; 21(4): 772-789, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30659246

RESUMO

PURPOSE: Glycogen storage disease (GSD) types VI and IX are rare diseases of variable clinical severity affecting primarily the liver. GSD VI is caused by deficient activity of hepatic glycogen phosphorylase, an enzyme encoded by the PYGL gene. GSD IX is caused by deficient activity of phosphorylase kinase (PhK), the enzyme subunits of which are encoded by various genes: ɑ (PHKA1, PHKA2), ß (PHKB), É£ (PHKG1, PHKG2), and δ (CALM1, CALM2, CALM3). Glycogen storage disease types VI and IX have a wide spectrum of clinical manifestations and often cannot be distinguished from each other, or from other liver GSDs, on clinical presentation alone. Individuals with GSDs VI and IX can present with hepatomegaly with elevated serum transaminases, ketotic hypoglycemia, hyperlipidemia, and poor growth. This guideline for the management of GSDs VI and IX was developed as an educational resource for health-care providers to facilitate prompt and accurate diagnosis and appropriate management of patients. METHODS: A national group of experts in various aspects of GSDs VI and IX met to review the limited evidence base from the scientific literature and provided their expert opinions. Consensus was developed in each area of diagnosis, treatment, and management. Evidence bases for these rare disorders are largely based on expert opinion, particularly when targeted therapeutics that have to clear the US Food and Drug Administration (FDA) remain unavailable. RESULTS: This management guideline specifically addresses evaluation and diagnosis across multiple organ systems involved in GSDs VI and IX. Conditions to consider in a differential diagnosis stemming from presenting features and diagnostic algorithms are discussed. Aspects of diagnostic evaluation and nutritional and medical management, including care coordination, genetic counseling, and prenatal diagnosis are addressed. CONCLUSION: A guideline that will facilitate the accurate diagnosis and optimal management of patients with GSDs VI and IX was developed. This guideline will help health-care providers recognize patients with GSDs VI and IX, expedite diagnosis, and minimize adverse sequelae from delayed diagnosis and inappropriate management. It will also help identify gaps in scientific knowledge that exist today and suggest future studies.


Assuntos
Genômica , Doença de Depósito de Glicogênio/genética , Hipoglicemia/genética , Fosforilase Quinase/genética , Gerenciamento Clínico , Genética Médica/tendências , Glicogênio/genética , Glicogênio/metabolismo , Doença de Depósito de Glicogênio/diagnóstico , Doença de Depósito de Glicogênio/epidemiologia , Doença de Depósito de Glicogênio/terapia , Guias como Assunto , Humanos , Hipoglicemia/metabolismo , Hipoglicemia/terapia , Fígado/metabolismo , Fígado/patologia , Mutação , Fosforilase Quinase/química , Estados Unidos/epidemiologia
9.
Cleft Palate Craniofac J ; 55(5): 773-777, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29489401

RESUMO

Pierre Robin Sequence (PRS) can be associated with skeletal dysplasias, presenting with craniocervical instability and devastating spinal injury if unrecognized. The authors present the case of an infant with PRS and a type II collagenopathy who underwent multiple airway-securing procedures requiring spinal manipulation before craniocervical instability was identified. This resulted in severe cervical cord compression due to odontoid fracture and occipitoatlantoaxial instability. This case highlights the importance of early cervical spine imaging and cautious manipulation in infants with PRS and suspected skeletal dysplasia.


Assuntos
Obstrução das Vias Respiratórias/cirurgia , Articulação Atlantoaxial/lesões , Instabilidade Articular/etiologia , Processo Odontoide/lesões , Osteocondrodisplasias/etiologia , Posicionamento do Paciente/efeitos adversos , Síndrome de Pierre Robin/complicações , Síndrome de Pierre Robin/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Obstrução das Vias Respiratórias/diagnóstico por imagem , Articulação Atlantoaxial/diagnóstico por imagem , Humanos , Recém-Nascido , Instabilidade Articular/diagnóstico por imagem , Instabilidade Articular/cirurgia , Imageamento por Ressonância Magnética , Masculino , Processo Odontoide/diagnóstico por imagem , Processo Odontoide/cirurgia , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/cirurgia , Síndrome de Pierre Robin/diagnóstico por imagem , Procedimentos de Cirurgia Plástica/efeitos adversos , Compressão da Medula Espinal/diagnóstico por imagem , Compressão da Medula Espinal/etiologia , Compressão da Medula Espinal/cirurgia , Tomografia Computadorizada por Raios X , Resultado do Tratamento
10.
Pediatr Clin North Am ; 65(2): 317-335, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29502916

RESUMO

Fatty acid oxidation disorders (FAODs) and carnitine shuttling defects are inborn errors of energy metabolism with associated mortality and morbidity due to cardiomyopathy, exercise intolerance, rhabdomyolysis, and liver disease with physiologic stress. Hypoglycemia is characteristically hypoketotic. Lactic acidemia and hyperammonemia may occur during decompensation. Recurrent rhabdomyolysis is debilitating. Expanded newborn screening can detect most of these disorders, allowing early, presymptomatic treatment. Treatment includes avoiding fasting and sustained extraneous exercise and providing high-calorie hydration during illness to prevent lipolysis, and medium-chain triglyceride oil supplementation in long-chain FAODs. Carnitine supplementation may be helpful. However, conventional treatment does not prevent all symptoms.


Assuntos
Carnitina/metabolismo , Ácidos Graxos/metabolismo , Erros Inatos do Metabolismo/diagnóstico , Doenças Musculares/etiologia , Triagem Neonatal/métodos , Humanos , Lactente , Recém-Nascido , Erros Inatos do Metabolismo/complicações , Erros Inatos do Metabolismo/terapia , Doenças Musculares/terapia , Oxirredução
11.
Ann Transl Med ; 6(24): 474, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30740405

RESUMO

Glucose is the main energy fuel for the human brain. Maintenance of glucose homeostasis is therefore, crucial to meet cellular energy demands in both - normal physiological states and during stress or increased demands. Glucose is stored as glycogen primarily in the liver and skeletal muscle with a small amount stored in the brain. Liver glycogen primarily maintains blood glucose levels, while skeletal muscle glycogen is utilized during high-intensity exertion, and brain glycogen is an emergency cerebral energy source. Glycogen and glucose transform into one another through glycogen synthesis and degradation pathways. Thus, enzymatic defects along these pathways are associated with altered glucose metabolism and breakdown leading to hypoglycemia ± hepatomegaly and or liver disease in hepatic forms of glycogen storage disorder (GSD) and skeletal ± cardiac myopathy, depending on the site of the enzyme defects. Overall, defects in glycogen metabolism mainly present as GSDs and are a heterogenous group of inborn errors of carbohydrate metabolism. In this article we review the genetics, epidemiology, clinical and metabolic findings of various types of GSD, and glycolysis defects emphasizing current treatment and implications for future directions.

12.
J Inherit Metab Dis ; 41(2): 169-180, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29238895

RESUMO

Combined D-2- and L-2-hydroxyglutaric aciduria (D/L-2-HGA) is a devastating neurometabolic disorder, usually lethal in the first years of life. Autosomal recessive mutations in the SLC25A1 gene, which encodes the mitochondrial citrate carrier (CIC), were previously detected in patients affected with combined D/L-2-HGA. We showed that transfection of deficient fibroblasts with wild-type SLC25A1 restored citrate efflux and decreased intracellular 2-hydroxyglutarate levels, confirming that deficient CIC is the cause of D/L-2-HGA. We developed and implemented a functional assay and applied it to all 17 missense variants detected in a total of 26 CIC-deficient patients, including eight novel cases, showing reduced activities of varying degrees. In addition, we analyzed the importance of residues affected by these missense variants using our existing scoring system. This allowed not only a clinical and biochemical overview of the D/L-2-HGA patients but also phenotype-genotype correlation studies.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Encefalopatias Metabólicas Congênitas/metabolismo , Ácido Cítrico/metabolismo , Glutaratos/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte de Ânions/química , Proteínas de Transporte de Ânions/genética , Bioensaio/métodos , Encefalopatias Metabólicas Congênitas/genética , Células Cultivadas , Pré-Escolar , Análise Mutacional de DNA , Feminino , Fibroblastos , Predisposição Genética para Doença , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Modelos Moleculares , Mutação de Sentido Incorreto , Transportadores de Ânions Orgânicos , Fenótipo , Conformação Proteica , Relação Estrutura-Atividade
13.
J Inherit Metab Dis ; 40(6): 831-843, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28871440

RESUMO

BACKGROUND: Observational reports suggest that supplementation that increases citric acid cycle intermediates via anaplerosis may have therapeutic advantages over traditional medium-chain triglyceride (MCT) treatment of long-chain fatty acid oxidation disorders (LC-FAODs) but controlled trials have not been reported. The goal of our study was to compare the effects of triheptanoin (C7), an anaplerotic seven-carbon fatty acid triglyceride, to trioctanoin (C8), an eight-carbon fatty acid triglyceride, in patients with LC-FAODs. METHODS: A double blinded, randomized controlled trial of 32 subjects with LC-FAODs (carnitine palmitoyltransferase-2, very long-chain acylCoA dehydrogenase, trifunctional protein or long-chain 3-hydroxy acylCoA dehydrogenase deficiencies) who were randomly assigned a diet containing 20% of their total daily energy from either C7 or C8 for 4 months was conducted. Primary outcomes included changes in total energy expenditure (TEE), cardiac function by echocardiogram, exercise tolerance, and phosphocreatine recovery following acute exercise. Secondary outcomes included body composition, blood biomarkers, and adverse events, including incidence of rhabdomyolysis. RESULTS: Patients in the C7 group increased left ventricular (LV) ejection fraction by 7.4% (p = 0.046) while experiencing a 20% (p = 0.041) decrease in LV wall mass on their resting echocardiogram. They also required a lower heart rate for the same amount of work during a moderate-intensity exercise stress test when compared to patients taking C8. There was no difference in TEE, phosphocreatine recovery, body composition, incidence of rhabdomyolysis, or any secondary outcome measures between the groups. CONCLUSIONS: C7 improved LV ejection fraction and reduced LV mass at rest, as well as lowering heart rate during exercise among patients with LC-FAODs. CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov NCT01379625.


Assuntos
Caprilatos/uso terapêutico , Cardiomiopatias/tratamento farmacológico , Ácidos Graxos/metabolismo , Erros Inatos do Metabolismo Lipídico/tratamento farmacológico , Miopatias Mitocondriais/tratamento farmacológico , Proteína Mitocondrial Trifuncional/deficiência , Doenças do Sistema Nervoso/tratamento farmacológico , Rabdomiólise/tratamento farmacológico , Triglicerídeos/uso terapêutico , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Adolescente , Adulto , Cardiomiopatias/metabolismo , Carnitina/metabolismo , Criança , Gorduras na Dieta/metabolismo , Método Duplo-Cego , Exercício Físico/fisiologia , Feminino , Humanos , Erros Inatos do Metabolismo Lipídico/metabolismo , Masculino , Pessoa de Meia-Idade , Miopatias Mitocondriais/metabolismo , Proteína Mitocondrial Trifuncional/metabolismo , Doenças do Sistema Nervoso/metabolismo , Oxirredução , Rabdomiólise/metabolismo , Adulto Jovem
14.
Clin Case Rep ; 5(8): 1277-1283, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28781842

RESUMO

Clinical features are variable in patients with Cornelia de Lange syndrome (CdLS). Milder forms exist with structural maintenance of chromosomes 3 (SMC3) mutations. Inherited milder forms of CdLS are uncommon and may be missed if genetic testing is limited to Nipped-B-like protein (NIPBL) and SMC1A. Parental studies should be pursued if there is a history of learning disabilities and/or dysmorphic features.

15.
Pediatr Dev Pathol ; 20(6): 498-505, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28403691

RESUMO

Autoinflammatory diseases are caused by pathologic activation of the innate immune system. Primary hemophagocytic lymphohistiocytosis (HLH) is an aggressive syndrome of excessive immune activation caused by monogenic mutations resulting in cytotoxic cell defects and subsequent failure to eliminate activated macrophages. Secondary HLH is often diagnosed in cases without a known Mendelian inheritance. However, some cases of "secondary" HLH have been shown to harbor mutations with partial dysfunction of the cytotoxic system. Recently, macrophage intrinsic abnormalities caused by NLRC4 inflammasome mutations have been linked to autoinflammation and recurrent macrophage activation syndromes resembling a primary HLH. We report a case of a former 28-week preterm infant with congenital anemia, ascites, and a heavy edematous placenta with fetal thrombotic vasculopathy, who developed hepatosplenomegaly and unexplained systemic inflammation with laboratory features of HLH in the early postnatal course and died at 2 months of age. Postmortem examination confirmed the hepatosplenomegaly with marked sinusoidal hemophagocytosis, along with striking hemophagocytosis in the bone marrow and lymph nodes. There was extensive acute and chronic ischemic bowel disease with matted bowel loops, fibrous adhesions, and patchy necrotizing enterocolitis features. Whole exome sequencing analysis demonstrated a novel mosaic heterozygous NLRC4 512 C> T (p.Ser171Phe) de novo mutation predicated to cause a dominant, gain-of-function mutation resulting in a constitutively active protein. The assembly of NLRC4-containing inflammasomes via an induced self-propagation mechanism likely enables a perpetuating process of systemic macrophage activation, presumed to be initiated in utero in this patient.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas de Ligação ao Cálcio/genética , Mutação com Ganho de Função , Hepatomegalia/genética , Doenças Hereditárias Autoinflamatórias/genética , Linfo-Histiocitose Hemofagocítica/genética , Esplenomegalia/genética , Anemia/congênito , Anemia/diagnóstico , Anemia/genética , Ascite/congênito , Ascite/diagnóstico , Ascite/genética , Evolução Fatal , Feminino , Marcadores Genéticos , Hepatomegalia/congênito , Hepatomegalia/diagnóstico , Doenças Hereditárias Autoinflamatórias/diagnóstico , Heterozigoto , Humanos , Lactente , Linfo-Histiocitose Hemofagocítica/congênito , Linfo-Histiocitose Hemofagocítica/diagnóstico , Esplenomegalia/congênito , Esplenomegalia/diagnóstico , Síndrome , Trombose/congênito , Trombose/diagnóstico , Trombose/genética
16.
Pediatr Dev Pathol ; 20(1): 72-75, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28276300

RESUMO

Cystinosis is the most common cause of inherited renal Fanconi syndrome in young children, and typically presents with laboratory findings of a proximal tubulopathy and corneal crystals by one year of age. We describe here renal biopsy findings in a 20-month-old patient with an atypical presentation of distal renal tubular acidosis, diabetes insipidus, and the absence of corneal crystals. Although renal biopsy is usually not necessary to establish the diagnosis of cystinosis, when the patient presents with atypical signs and symptoms, a renal biopsy may be extremely valuable. A 20-month-old boy presented with failure to thrive, polyuria, polydipsia, and rickets. He initially showed evidence of a renal tubular acidosis, mild renal insufficiency, and nephrogenic diabetes insipidus. His initial ophthalmologic examination did not demonstrate corneal crystals. His subsequent workup revealed phosphaturia, suggesting a partial proximal tubulopathy. Concomitantly, a renal biopsy revealed prominent podocytes with an immature glomerular appearance, and electron microscopy analysis showed numerous intracellular crystals within tubular epithelial cells. Subsequent laboratory and genetic testing confirmed a diagnosis of infantile nephropathic cystinosis. This case highlights the variability in the clinical presentation of cystinosis, resulting in an uncommon clinical picture of a rare disease. Given that treatment is available to prolong renal function and minimize the extra-renal manifestations of this disorder, early diagnosis is essential. It is important to raise the index of suspicion of cystinosis by recognizing its subtle morphological changes in young patients, and that nephrogenic diabetes insipidus can be secondary to this disorder.


Assuntos
Cistinose/diagnóstico , Diabetes Insípido Nefrogênico/etiologia , Rim/patologia , Biópsia , Cistinose/complicações , Cistinose/patologia , Diabetes Insípido Nefrogênico/diagnóstico , Humanos , Lactente , Masculino
17.
Am J Hum Genet ; 99(3): 720-727, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27545676

RESUMO

SON is a key component of the spliceosomal complex and a critical mediator of constitutive and alternative splicing. Additionally, SON has been shown to influence cell-cycle progression, genomic integrity, and maintenance of pluripotency in stem cell populations. The clear functional relevance of SON in coordinating essential cellular processes and its presence in diverse human tissues suggests that intact SON might be crucial for normal growth and development. However, the phenotypic effects of deleterious germline variants in SON have not been clearly defined. Herein, we describe seven unrelated individuals with de novo variants in SON and propose that deleterious variants in SON are associated with a severe multisystem disorder characterized by developmental delay, persistent feeding difficulties, and congenital malformations, including brain anomalies.


Assuntos
Anormalidades Congênitas/genética , Proteínas de Ligação a DNA/genética , Deficiências do Desenvolvimento/genética , Insuficiência de Crescimento/genética , Deficiência Intelectual/genética , Antígenos de Histocompatibilidade Menor/genética , Deleção de Sequência/genética , Adolescente , Encéfalo/anormalidades , Criança , Pré-Escolar , Proteínas de Ligação a DNA/química , Exoma/genética , Feminino , Humanos , Masculino , Antígenos de Histocompatibilidade Menor/química , Linhagem , Adulto Jovem
18.
Am J Hum Genet ; 95(5): 579-83, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25439098

RESUMO

5q31.3 microdeletion syndrome is characterized by neonatal hypotonia, encephalopathy with or without epilepsy, and severe developmental delay, and the minimal critical deletion interval harbors three genes. We describe 11 individuals with clinical features of 5q31.3 microdeletion syndrome and de novo mutations in PURA, encoding transcriptional activator protein Pur-α, within the critical region. These data implicate causative PURA mutations responsible for the severe neurological phenotypes observed in this syndrome.


Assuntos
Anormalidades Múltiplas/genética , Deleção Cromossômica , Cromossomos Humanos Par 5/genética , Proteínas de Ligação a DNA/genética , Hipotonia Muscular/genética , Convulsões/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Mapeamento Cromossômico , Humanos , Dados de Sequência Molecular , Mutação/genética , Análise de Sequência de DNA , Síndrome
19.
Obstet Gynecol ; 122(6): 1246-54, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24201678

RESUMO

OBJECTIVE: To evaluate menorrhagia in a cohort of women with glycogen storage disease type I because it appears to be an under-recognized problem in females of reproductive age. METHODS: A retrospective chart review was performed on 13 menstruating patients with glycogen storage disease type I (age 23-48 years) for a diagnosis of menorrhagia. RESULTS: Nine (69%) (confidence interval 0.39-0.91) women had development of menorrhagia. Median hemoglobin values in these patients were generally low (range 9.5-12.85 g/dL) but not different from those of the nonmenorrhagia group (hemoglobin range 9.55-11.0 g/dL) with glycogen storage disease type I. Four patients with menorrhagia required hospitalization or emergency department visits for treatment of menorrhagia. Two of the four patients hospitalized required blood transfusion, with an additional patient requiring a transfusion during pregnancy. Eight patients (89%) either were recommended to have or required medical or surgical treatment of their menorrhagia. CONCLUSION: Glycogen storage disease type I is associated with menorrhagia. The evaluation should include assessment of coagulation functions and referral to a gynecologist, hematologist, or both, because bleeding diathesis and polycystic ovary syndrome are common in patients with glycogen storage disease type I.


Assuntos
Adenoma/complicações , Doença de Depósito de Glicogênio Tipo I/sangue , Doença de Depósito de Glicogênio Tipo I/complicações , Neoplasias Hepáticas/complicações , Menorragia/sangue , Menorragia/complicações , Adulto , Anemia/sangue , Anemia/etiologia , Glicemia/metabolismo , Feminino , Hemoglobinas/metabolismo , Hormônios/uso terapêutico , Humanos , Hiperlipidemias/sangue , Hiperlipidemias/complicações , Ácido Láctico/sangue , Menorragia/terapia , Pessoa de Meia-Idade , Agregação Plaquetária , Estudos Retrospectivos , Adulto Jovem , Fator de von Willebrand/metabolismo
20.
Mol Genet Metab ; 109(2): 215-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23583224

RESUMO

Guanidinoacetate methyltransferase (GAMT) deficiency is a good candidate disorder for newborn screening because early treatment appears to improve outcomes. We report elevation of guanidinoacetate in archived newborn dried blood spots for 3 cases (2 families) of GAMT deficiency compared with an unaffected carrier and controls. We also report a new case of a patient treated from birth with normal developmental outcome at the age of 42 months.


Assuntos
Glicina/análogos & derivados , Guanidinoacetato N-Metiltransferase/deficiência , Transtornos do Desenvolvimento da Linguagem/terapia , Transtornos dos Movimentos/congênito , Estudos de Casos e Controles , Pré-Escolar , Creatina/uso terapêutico , Teste em Amostras de Sangue Seco , Diagnóstico Precoce , Feminino , Glicina/sangue , Guanidinoacetato N-Metiltransferase/sangue , Humanos , Lactente , Recém-Nascido , Transtornos do Desenvolvimento da Linguagem/sangue , Transtornos do Desenvolvimento da Linguagem/diagnóstico , Masculino , Transtornos dos Movimentos/sangue , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/terapia , Ornitina/uso terapêutico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA