Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080408

RESUMO

Waste from crustaceans has adverse effects on the environment. In this respect, shrimp waste was valorized for producing chitosan nanoparticles as a source for eco-friendly nano-nitrogen fertilizer. The application of nano-nitrogen fertilizers is a valuable alternative approach in agriculture due to its potential for reducing the application of mineral nitrogen fertilizers and increasing yield quality and quantity, thereby helping to reduce the worldwide food shortage. Chitosan nanoparticles were foliar sprayed at three volumes (0, 7, and 14 L/ha) and compared with mineral nitrogen fertilizer (M-N) sprayed at three volumes (0, 120, and 240 kg N/ha) and their combination on two wheat cultivars (Misr-1 and Gemaiza-11) during two consecutive seasons (2019/2020 and 2020/2021) in order to evaluate the agronomic response. The synthesized chitosan nanoparticles displayed characteristic bands of both Nan-N and urea/chitosan from 500-4000 cm-1. They are stable and have a huge surface area of 73.21 m2 g-1. The results revealed significant differences among wheat cultivars, fertilization applications, individual or combined, and their interactions for yield-contributing traits. Foliar application of nano-nitrogen fertilizer at 14 L/ha combined with mineral fertilizer at 240 kg/ha significantly increased total chlorophyll content by 41 and 31% compared to control; concerning plant height, the two cultivars recorded the tallest plants (86.2 and 86.5 cm) compared to control. On the other hand, the heaviest 1000-grain weight (55.8 and 57.4 g) was recorded with treatment of 120 kg Mn-N and 14 L Nan-N/ha compared to the control (47.6 and 45.5 g). The Misr-1 cultivar achieved the highest values for grain yield and nitrogen (1.30 and 1.91 mg/L) and potassium (9.87 and 9.81 mg/L) in the two studied seasons when foliarly sprayed with the combination of 120 kg Mn-N/ha + 14 L Nan-N/ha compared to the Gemaiza-11 cultivar. It can be concluded that Misr-1 exhibited higher levels of total chlorophyll content, spike length, 100-grain weight, grain yield in kg/ha, and nitrogen and potassium. However, Gemaiza-11 displayed higher biomass and straw yield values, plant height, and sodium concentration values. It could be economically recommended to use the application of 120 kg Mn-N/ha + 14 L Nan-N/ha on the Misr-1 cultivar to achieve the highest crop yield.


Assuntos
Quitosana , Nanopartículas , Agricultura/métodos , Clorofila , Grão Comestível/química , Fertilizantes/análise , Nitrogênio/análise , Potássio , Solo , Triticum
2.
Saudi J Biol Sci ; 29(4): 2238-2246, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531200

RESUMO

Spinach (Spinacia oleracea L.) is considered a nitrogen (N) intensive plant with high nitrate (NO3 -) accumulation in its leaves. The current study via a two-year field trial introduced an approach by combining N fertilization from different sources (e.g., ammonium nitrate; 33.5 % N, and urea; 48 % N) at different rates (180, and 360 kg N ha-1) with the foliar spraying of molybdenum (Mo) as sodium molybdate, and/or manganese (Mn) as manganese sulphate at rates of 50 and 100 mgL-1 of each or with a mixture of Mo and Mn at rates of 50 and 50 mg L-1, respectively on growth, chemical constituents, and NO3 - accumulation in spinach leaves. Our findings revealed that the highest rate of N fertilization (360 kg N ha-1) significantly increased most of the measured parameters e.g., plant length, fresh and dry weight plant-1, number of leaves plant-1, leaf area plant-1, leaf pigments (chlorophyll a, b and carotenoids), nutrients (N, P, K, Fe, Mn, Zn), total soluble carbohydrates, protein content, net assimilation rate, and NO3 - accumulation, but decreased leaf area ratio and relative growth rate. Moreover, plants received urea-N fertilizer gave the highest values of all previous attributes when compared with ammonium nitrate -N fertilizers, and the lowest values of NO3 - accumulation. The co-fertilization of N-Mo-Mn gave the highest values in all studied attributes and the lowest NO3 - accumulation. The best treatment was recorded under the treatment of 360 kg N-urea ha-1 in parallel with the combined foliar application of Mo and Mn (50 + 50 mg L-1). Our findings proposed that the co-fertilization of N-Mo-Mn could enhance spinach yield and its quality, while reducing NO3 - accumulation in leaves, resulting agronomical, environmental and economic benefits.

3.
Plants (Basel) ; 11(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35214829

RESUMO

Two successive field trials were carried out at the experimental farm of the Agriculture Department of Fayoum University, Fayoum, Egypt, to investigate the sole or dual interaction effect of applying a foliar spray of Aloe saponaria extract (Ae) or potassium silicate (KSi) on reducing the stressful salinity impacts on the development, yield, and features of roselle (Hibiscus sabdariffa L.) plants. Both Ae or KSi were used at three rates: 0% (0 cm3 L-1), 0.5% (5 cm3 L-1), and 1% (10 cm3 L-1) and 0, 30, and 60 g L-1, respectively. Three rates of salinity, measured by the electrical conductivity of a saturated soil extract (ECe), were also used: normal soil (ECe < 4 dS/m) (S1); moderately-saline soil (ECe: 4-8 dS/m) (S2); and highly-saline soil (ECe: 8-16 dS/m) (S3). The lowest level of salinity yielded the highest levels of all traits except for pH, chloride, and sodium. Ae at 0.5% increased the values of total soluble sugars, total free amino acids, potassium, anthocyanin, a single-photon avalanche diode, stem diameter, fruit number, and fresh weight, whereas 1% of Ae resulted in the highest plant height, chlorophyll fluorescence (Fv/Fm), performance index, relative water content, membrane stability index, proline, total soluble sugars, and acidity. KSi either at 30 or 60 g L-1 greatly increased these abovementioned attributes. Fruit number and fruit fresh weight per plant also increased significantly with the combination of Ae at 1% and KSi at 30 g L-1 under normal soil conditions.

4.
Saudi J Biol Sci ; 29(2): 955-962, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35197763

RESUMO

This work aims to study the effect of foliar spraying of three anti-transpirants i.e., A-1: tryptophan (Tri), A2: potassium silicate (KS), A3: chitosan (Chi) as well as A0: control (Tap water) under three irrigation regimes, I1: 2400, I2: 3600, and I3: 4800 m3ha-1 on the quality and production of faba bean crop and its nutrient contents. The study was carried out during two successive winter seasons of 2018/2019 and 2019/2020. Drought stress affected the average performance of all studied traits as it reduced seed yield and traits, as a result of the decrease in chlorophyll related to photosynthesis, protein, carbohydrates, total phenols, amino acids, macronutrients (N, P, and K), micronutrient contents (Fe, Mn, and Zn) and their absorption. The single foliar spraying of faba bean with tryptophan 75 ppm, potassium silicate at 100 ppm, or chitosan at 750 ppm significantly increased all studied traits and reduced the drought stress compared to control under different irrigation systems. We recommended using a foliar spray of chitosan (750 ppm) on faba bean plants under an irrigation level of 4800 m3 led to an improvement in the physiological properties of the plant, i.e., plant height, the number of branches/plants, and the number of plants, pods plant-1, the number of seed pods-1, the weight of 100 seeds and seed yield ha-1 increased with relative increase about 42.29, 89.47, 28.85, 75.91, 24.43, and 306.48% compared to control. The quality properties also improved, as the total chlorophyll, protein, carbohydrates, total phenols, and amino acids were higher than the control with a relative increase of 63.83, 29.58, 27.72, 37.54, and 64.19%. Additionally, an increase in the contents and uptake of macronutrients (N, P, and K), and micronutrients (Fe, Mn, Zn) and their absorption. The increase was estimated with 29.41, 75.00, 16.56, 431.17, 630.48, 72.68%, 22.37, 35.69, 42.33, 397.63, 452.58, and 485.94% about the control. This was followed by potassium silicate (100 ppm), then tryptophan (75 ppm) compared to the control, which recorded the minimum values ​​in plant traits.

5.
Saudi J Biol Sci ; 28(10): 5849-5859, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34588900

RESUMO

Sesame (Sesamum indicum L.), the "Queen of oil seeds" is being infected with pathogens, i.e., fungi, bacteria, virus and nematodes. Fusarium oxysporum sp. sesami (Zap.), is one of the fiercest pathogens causing severe economic losses on sesame. This work aimed to evaluate the impact of the cultivation of some preceding crops and seed inoculation with antagonistic predominant rhizospheric bacteria and actinomycetes on the incidence and development of Fusarium damping-off and wilt disease. Results showed that the lowest pre and/or post-emergence damping-off and wilt of sesame were recorded after onion and garlic, followed by wheat compared to clover in both the 2019 and 2020 seasons. In vitro, soil extracts from plots where onion and garlic have been cultivated slightly decreased the conidia germination and mycelium radial growth of F. oxysporum. The numbers of sesame rhizospheric F. oxysporum and fungi were lower after the cultivation of onion and garlic than those after wheat and clover. However, the numbers of actinomycetes and bacteria were higher in the onion, garlic, and clover rhizosphere than wheat. Among all isolated bacteria and actinomycetes associated with sesame roots cultivated after preceding plants, the Tricoderma viride and Bacillus subtilis (isolate No.3) profoundly reduce F. oxysporum mycelial growth in vitro. When sesame seeds were inoculated with Tricoderma viride, Bacillus subtilis, Streptomyces rochei and Pseudomonas fluorescens, the disease incidence of damping-off and wilt significantly decreased in the greenhouse and field trials conducted in both tested growing seasons, also had highly significant on plant health and growth parameters. Therefore, the current study suggested that using the preceding onion and garlic plants could be used for eco-friendly reduction of damping-off and wilt disease of sesame.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA