Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 24(1): 49, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254071

RESUMO

BACKGROUND: The continuous evolution of drug-resistant influenza viruses highlights the necessity for repurposing naturally-derived and safe phytochemicals with anti-influenza activity as novel broad-spectrum anti-influenza medications. METHODS: In this study, nitrogenous alkaloids were tested for their viral inhibitory activity against influenza A/H1N1 and A/H5N1 viruses. The cytotoxicity of tested alkaloids on MDCK showed a high safety range (CC50 > 200 µg/ml), permitting the screening for their anti-influenza potential. RESULTS: Herein, atropine sulphate, pilocarpine hydrochloride and colchicine displayed anti-H5N1 activities with IC50 values of 2.300, 0.210 and 0.111 µg/ml, respectively. Validation of the IC50 values was further depicted by testing the three highly effective alkaloids, based on their potent IC50 values against seasonal influenza A/H1N1 virus, showing comparable IC50 values of 0.204, 0.637 and 0.326 µg/ml, respectively. Further investigation suggests that colchicine could suppress viral infection by primarily interfering with IAV replication and inhibiting viral adsorption, while atropine sulphate and pilocarpine hydrochloride could directly affect the virus in a cell-free virucidal effect. Interestingly, the in silico molecular docking studies suggest the abilities of atropine, pilocarpine, and colchicine to bind correctly inside the active sites of the neuraminidases of both influenza A/H1N1 and A/H5N1 viruses. The three alkaloids exhibited good binding energies as well as excellent binding modes that were similar to the co-crystallized ligands. On the other hand, consistent with in vitro results, only colchicine could bind correctly against the M2-proton channel of influenza A viruses (IAVs). This might explicate the in vitro antiviral activity of colchicine at the replication stage of the virus replication cycle. CONCLUSION: This study highlighted the anti-influenza efficacy of biologically active alkaloids including colchicine. Therefore, these alkaloids should be further characterized in vivo (preclinical and clinical studies) to be developed as anti-IAV agents.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Humanos , Colchicina/farmacologia , Pilocarpina , Influenza Humana/tratamento farmacológico , Simulação de Acoplamento Molecular , Estações do Ano , Compostos Fitoquímicos/farmacologia , Atropina , Antivirais/farmacologia
3.
Sci Rep ; 13(1): 1612, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709362

RESUMO

The persistent evolution of drug-resistant influenza strains represents a global concern. The innovation of new treatment approaches through drug screening strategies and investigating the antiviral potential of bioactive natural-based chemicals may address the issue. Herein, we screened the anti-influenza efficacy of some biologically active indole and ß-carboline (ßC) indole alkaloids against two different influenza A viruses (IAV) with varied host range ranges; seasonal influenza A/Egypt/NRC098/2019(H1N1) and avian influenza A/chicken/Egypt/N12640A/2016(H5N1). All compounds were first assessed for their half-maximal cytotoxic concentration (CC50) in MDCK cells and half-maximal inhibitory concentrations (IC50) against influenza A/H5N1. Intriguingly, Strychnine sulfate, Harmalol, Harmane, and Harmaline showed robust anti-H5N1 activities with IC50 values of 11.85, 0.02, 0.023, and 3.42 µg/ml, respectively, as compared to zanamivir and amantadine as control drugs (IC50 = 0.079 µg/ml and 17.59 µg/ml, respectively). The efficacy of the predefined phytochemicals was further confirmed against influenza A/H1N1 and they displayed potent anti-H1N1 activities compared to reference drugs. Based on SI values, the highly promising compounds were then evaluated for antiviral efficacy through plaque reduction assay and consistently they revealed high viral inhibition percentages at non-toxic concentrations. By studying the modes of antiviral action, Harmane and Harmalol could suppress viral infection via interfering mainly with the viral replication of the influenza A/H5N1 virus, whilst Harmaline exhibited a viricidal effect against the influenza A/H5N1 virus. Whereas, Strychnine sulfate elucidated its anti-influenza potency by interfering with viral adsorption into MDCK cells. Consistently, chemoinformatic studies showed that all studied phytochemicals illustrated HB formations with essential peptide cleft through the NH of indole moiety. Among active alkaloids, harmalol displayed the best lipophilicity metrics including ligand efficiency (LE) and ligand lipophilic efficiency (LLE) for both viruses. Compounds geometry and their ability to participate in HB formation are very crucial.


Assuntos
Alcaloides , Vírus da Influenza A , Influenza Humana , Animais , Humanos , Antivirais/farmacologia , Estricnina/farmacologia , Harmalina/farmacologia , Ligantes , Vírus da Influenza A/fisiologia , Alcaloides/farmacologia , Influenza Humana/tratamento farmacológico , Sulfatos/farmacologia , Replicação Viral
4.
AAPS PharmSciTech ; 24(1): 15, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522541

RESUMO

Pollution is a worldwide environmental risk. Arsenic (As) is an environmental pollutant with a major health concern due to its toxic effects on multiple body organs, including the brain. Humans are exposed to As through eating contaminated food and water or via skin contact. Salix species (willow) are plants with medicinal efficacy. Salix subserrata Willd bark extract-loaded chitosan nanoparticles (SBE.CNPs) was formulated, characterized, and evaluated against As-induced neurotoxicity. The stem bark was selected for nanoparticle formulation based on HPLC-PDA-ESI-MS/MS profiling and in vitro antioxidant assessment using free radical scavenging activity. SBE.CNPs demonstrated an average un-hydrated diameter of 193.4 ± 24.5 nm and zeta potential of + 39.6 ± 0.4 mV with an encapsulation efficiency of 83.7 ± 4.3%. Compared to As-intoxicated rats, SBE.CNP-treated rats exhibited anxiolytic activity and memory-boosting as evidenced in open field test, light-dark activity box, and Y-maze. Also, it increased the antioxidant biomarkers, including superoxide dismutase and glutathione peroxidase associated with reducing the malondialdehyde levels and apoptotic activity. Besides this, SBE.CNPs maintained the brain architecture and downregulated both nuclear factor-kappa B and heme oxygenase-1 expression. These results suggest that SBE.CNP administration showed promising potent neuroprotective and antioxidative efficiencies against arsenic-induced oxidative threats.


Assuntos
Arsênio , Quitosana , Nanopartículas , Salix , Humanos , Animais , Ratos , Antioxidantes/farmacologia , Casca de Planta , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/farmacologia
5.
Environ Sci Pollut Res Int ; 29(18): 26775-26791, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34855180

RESUMO

Coronavirus disease 2019 (COVID-19) is a rapidly growing pandemic that requires urgent therapeutic intervention. Finding potential anti COVID-19 drugs aside from approved vaccines is progressively going on. The chemically diverse natural products represent valuable sources for drug leads. In this study, we aimed to find out safe and effective COVID-19 protease inhibitors from a library of natural products which share the main nucleus/skeleton of FDA-approved drugs that were employed in COVID-19 treatment guidelines or repurposed by previous studies. Our library was subjected to virtual screening against SARS-CoV Main protease (Mpro) using Molecular Operating Environment (MOE) software. Twenty-two out of those natural candidates showed higher binding scores compared to their analogues. We repurpose these natural products including alkaloids, glucosinolates, and phenolics as potential platforms for the development of anti-SARS-CoV-2 therapeutics. This study paves the way towards discovering a lead used in the treatment of COVID-19 from natural sources and introduces phytomedicines with dual therapeutic effects against COVID-19 besides their original pharmacological effects. We recommend further in vitro evaluation of their anti-COVID-19 activity and future clinical studies.


Assuntos
Produtos Biológicos , Tratamento Farmacológico da COVID-19 , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Humanos , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA