Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0307335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995925

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0282742.].

2.
RSC Adv ; 14(28): 19969-19982, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38911833

RESUMO

Recently, carbon dots (CDs) have been extensively investigated as potential tools for numerous applications. Modified lignin-based CDs have been synthesized and used in the field of drug detection. They were found to be highly selective and sensitive to valsartan (VAL). Using a simple hydrothermal method, phosphorus and chlorine co-doped CDs were synthesized using lignin extracted from date seeds. The fluorescence properties of the synthesized CDs are influenced by several factors, which were investigated in detail. The optimal synthesis conditions were 1.50 g of lignin, 18 mL of 2 M NaOH, 1 mM H3PO4, 3 mM HCl and the mixture was heated at 220 °C for 16 hours. The synthesized lignin-based CDs have excellent FL properties and are well soluble in water with reasonable stability. Characterization of the prepared CDs revealed that they have various functional groups with a graphene oxide-like structure. The developed CDs show a good quantum yield of 37.7%. The FL of the CDs is quenched by VAL at λ em 313 nm after λ ex at 275 nm by a combination of static and dynamic quenching mechanisms. The response of VAL was linear in the range of 4.0-100.0 µg mL-1. The detection and quantification limits of VAL were 1.23 and 3.71 µg mL-1, respectively. The nanoprobe was successfully used to analyze VAL in drug samples and provided satisfactory results.

3.
Heliyon ; 10(11): e31425, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38828354

RESUMO

The current work suggests a new, ultrasensitive green functionalized sensor for the determination of anti-inflammatory medication diclofenac sodium (DCF). Alumina (Al2O3) and cerium oxide (CeO2) nanoparticles (NPs) have attracted great interest for their use as outstanding and electroactive nanocomposite in potentiometric and sensory research due to their ultrafunctional potential. The formed nanoparticles have been confirmed using various spectroscopic and microscopic techniques. The fennel extract-mediated Al2O3/CeO2 nanocomposite (Al2O3/CeO2 NCS) modified coated wire membrane sensor developed in this study was used to quantify DCF in bulk and commercial products. Diclofenac sodium was coupled with phosphomolybdic acid (PMA) to generate diclofenac phosphomolybdate (DCF-PM) as an active ion-pair in the existence of polyvinyl chloride (PVC) and o-nitrophenyl octyl ether (o-NPOE). Clear peaks at 270, and 303 nm with band gaps of 4.59 eV and 4.09 eV were measured using UV-vis spectroscopy of Al2O3 and CeO2, respectively. The crystallite sizes of the formed nanoparticles were XRD-determined to be 30.13 ± 8, 17.72 ± 3, and 35.8 ± 0.5 nm for Al2O3, CeO2, and Al2O3/CeO2 NCS, respectively. The developed sensor showed excellent response for the measurement and assay of DCF, with a linearity between 1.0 × 10-9 and 1.0 × 10-2 mol L-1. EmV = (57.76) log [DCF] +622.69 was derived. On the other hand, the typical type DCF-PM presented a potentiometric response range of 1.0 × 10-5-1.0 × 10-2 mol L-1 and a regression equation of EmV = (56.97) log [DCF]+367.16. The functionalized sensor that was proposed was successful in determining DCF in its commercial tablets with percent recovery 99.95 ± 0.3. Method validation has been used to improve the suitability of the suggested potentiometric technique, by studying various parameters with respect to the international council harmonization requirements for analytical methodologies.

4.
Int J Anal Chem ; 2024: 8354311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715950

RESUMO

The advanced and highly functional properties of Al2O3 and NiO nanoparticles promote the widespread use of metal oxides as remarkable electroactive materials for sensing and electrochemical applications. The proposed study describes a comparison of the sensitivity and selectivity of two modified wire membrane sensors enriched with Al2O3 and NiO nanoparticles with conventional wire membranes for the quantification of the antidiabetic drug metformin hydrochloride (MTF). The results show linear relationships of the enriched Al2O3 and NiO nanosensors over the concentration ranges 1.0 × 10-10-1.0 × 10-2 mol L-1 and 1.0 × 10-6-1.0 × 10-2 M for both the modified sensors and the conventional coated wire membrane sensors. The regression equations were EmV = (52.1 ± 0.5) log (MTF) + 729 for enriched nanometallic oxides, EmV = (57.04 ± 0.4) log (MTF) + 890.66, and EmV = (58.27 ± 0.7) log (MTF) + 843.27 with correlation coefficients of 0.9991, 0.9997, and 0.9998 for the aforementioned sensors, respectively. The proposed method was fully validated with respect to the recommendations of the International Union of Pure and Applied Chemistry (IUPAC). The newly functionalized sensors have been successfully used for the determination of MTF in its commercial products.

5.
J Fluoresc ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814526

RESUMO

Recently, dual-mode techniques have garnered considerable attention and have been shown to be effective approaches for biomedical analysis and environmental monitoring. A novel and simple dual-mode spectrophotometric and fluorometric probe based on lignin-derived carbon dots (LCDs) was developed to detect atorvastatin calcium (ATS) in a bulk powder and its commercial product. The synthesized LCDs exhibit exceptional fluorescence characteristics and are highly soluble in water while maintaining reasonable stability. The average particle size of the LCDs was 3.42 ± 1.03 nm. The characterization of the produced LCDs indicated a structure resembling graphene oxide with the presence of several functional groups. The developed LCDs show a good fluorescence quantum yield of 32.2%. The fluorescence of the LCDs is quenched by ATS at an emission wavelength of 315 nm after excitation at 275 nm through dynamic and static quenching mechanisms. The optimal reaction conditions for the dual-mode reaction were a pH of 9 and 0.05 mL of the LCDs, which were measured after 3 min at 30 °C by spectrophotometry, followed by 7 min at 20 °C by fluorometric methods. According to the spectrophotometric results, the response of ATS was linear in the range of 4.0-100.0 µg/mL, while according to the fluorometric results, the dynamic range was 3.0-50.0 µg/mL. The limits of detection (LODs) and the limits of quantification (LOQs) were 0.97 µg/mL and 2.95 µg/mL for the fluorometric method, respectively. The nanoprobe effectively analyzed ATS in medication samples and yielded good results.

6.
Heliyon ; 10(4): e26164, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390119

RESUMO

The current research proposed a highly sensitive and selective spectrofluorometric approach for the assay of gastrointestinal medications omeprazole (OMZ) and domperidone (DOM). Green synthesis of metal oxide nanoparticles such as zinc oxide (ZnONPs) and cerium oxide (CeO2NPs) using Pimpinella anisum and Syzygium aromaticum extract was used as fluorescence emission catalysts for the determination of OMZ and DOM. Due to their unique optical properties, nanoparticles (NPs) form the basis for spectrofluorimetric quantification of the selected drugs. The detection studies were performed under λex/λem 350/450 nm and 284/392 nm for OMZ and DOM in the presence of ZnONPs and CeO2NPs, respectively. Under ideal conditions, fluorescence intensities (FI) were linearly with correlation coefficient (r = 0.999) over concentration ranges of 0.1-100 and 0.01-200 µg mL-1 for OMZ, 0.01-100 and 0.01-300 n g mL-1 for DOM in the presence of ZnONPs and CeO2NPs, respectively. Method validation was carried out to guarantee the accuracy, suitability, and precision of the proposed fluorescence (FL) systems for the determination of OMZ and DOM. Analytical method guidelines and requirements were followed. The designed procedure was used effectively to identify the determined drugs in both their pure and commercial versions.

7.
J Fluoresc ; 34(1): 465-478, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37610703

RESUMO

Cancer is a broad category of disease that can affect virtually any organ or tissue in the body when abnormal cells grow uncontrollably, invade surrounding tissue, and/or spread to other organs. Dabrafenib is indicated for the treatment of adult patients with advanced non-small cell lung cancer. In the present study, two newly developed spectrofluorimetric probes for the detection of the anticancer drug Dabrafenib (DRF) in its authentic and pharmaceutical products using an ecologically synthesized copper oxide nanoparticle (CuONPs) from Salvia officinalis leaf extract and a copper chelate complex are presented. The first system is based on the influence of the particular optical properties of CuONPs on the enhancement of fluorescence detection. The second system, on the other hand, acts through the formation of a copper charge transfer complex. Various spectroscopic and microscopic studies were performed to confirm the environmentally synthesized CuONPs. The fluorescence detections in the two systems were measured at λex 350 and λem of 432 nm. The results showed the linear concentration ranges for the DRF-CuONPs-SDS and DRF-Cu-SDS complexes were determined to be 1.0-500 ng mL- 1 and 1.0-200 ng mL- 1, respectively. FI = 1.8088x + 21.418 (r = 0.9997) and FI = 2.7536x + 163.37 (r = 0.9989) were the regression equations. The lower detection and quantification limits for the aforementioned fluorescent systems were determined to be 0.4 and 0.8 ng mL- 1 and 1.0 ng mL- 1, respectively. The results also showed that intra-day DRF assays using DRF-CuONPs-SDS and DRF-Cu(NO3)2-SDS systems yielded 0.17% and 0.54%, respectively. However, the inter-day assay results for the above systems were 0.27% and 0.65%, respectively. The aforementioned two systems were effectively used in the study of DRF with excellent percent recoveries of 99.66 ± 0.42% and 99.42 ± 0.56%, respectively. Excipients such as magnesium stearate, titanium dioxide, red iron oxide, and silicon dioxide used in pharmaceutical formulations, as well as various common cations, amino acids, and sugars, had no effect on the detection of compound.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Imidazóis , Neoplasias Pulmonares , Nanopartículas Metálicas , Nanopartículas , Oximas , Salvia officinalis , Humanos , Cobre/química , Espectrometria de Fluorescência , Nanopartículas/química , Dióxido de Silício , Nanopartículas Metálicas/química
8.
Molecules ; 28(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38005274

RESUMO

Gemcitabine is a chemotherapeutic agent used to treat various malignancies, including breast and bladder cancer. In the current study, three innovative selective gemcitabine hydrochloride sensors are developed using 4-tert-butylcalix-[8]-arene (sensor 1), ß-cyclodextrin (sensor 2), and γ-cyclodextrin (sensor 3) as ionophores. The three sensors were prepared by incorporating the ionophores with o-nitrophenyl octyl ether as plasticizer and potassium tetrakis(4-chlorophenyl) borate as ionic additive into a polyvinyl chloride polymer matrix. These sensors are considered environmentally friendly systems in the analytical research. The linear responses of gemcitabine hydrochloride were in the concentration range of 6.0 × 10-6 to 1.0 × 10-2 mol L-1 and 9.0 × 10-6 to 1.0 × 10-2 mol L-1 and 8.0 × 10-6 to 1.0 × 10-2 mol L-1 for sensors 1, 2, and 3, respectively. Over the pH range of 6-9, fast-Nernst slopes of 52 ± 0.6, 56 ± 0.3, and 55 ± 0.8 mV/decade were found in the same order with correlation regressions of 0.998, 0.999, and 0.998, respectively. The lower limits of detection for the prepared sensors were 2.5 × 10-6, 2.2 × 10-6, and 2.7 × 10-6 mol L-1. The sensors showed high selectivity and sensitivity for gemcitabine. Validation of the sensors was carried out in accordance with the requirements established by the IUPAC, while being inexpensive and easy to use in drug formulation. A statistical analysis of the methods in comparison with the official method showed that there was no significant difference in accuracy or precision between them. It was shown that the new sensors could selectively and accurately find gemcitabine hydrochloride in bulk powder, pharmaceutical formulations, and quality control tests. The ionophore-based sensor shows several advantages over conventional PVC membrane sensor sensors regrading the lower limit of detection, and higher selectivity towards the target ion.


Assuntos
Antineoplásicos , Gencitabina , Composição de Medicamentos , Ionóforos , Polímeros , Potenciometria/métodos , Cloreto de Polivinila
9.
PLoS One ; 18(10): e0286341, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37906583

RESUMO

The current study describes the biogenic synthesis of two metal oxides zinc oxide (ZnO), aluminum oxide (Al2O3) nanoparticles using Camellia sinensis, and Origanum vulgare L. leaves extract, respectively. The synthesized metal oxide nanoparticles were investigated using spectroscopic and microscopic techniques to confirm the formation of their nanostructures. Accurate and precise spectrofluorometric probes were proposed for the quantification of Ofloxacin (OFX) and Ciprofloxacin (CPFX) in their bulk and commercial formulations. The extraordinary properties of Zinc oxide and aluminum oxide nanoparticles (ZnONPs and Al2O3NPs) enhance the fluorescence intensity in the presence of 0.5 mL and 1.0 mL of sodium dodecyl sulfate (SDS, 1.0% w/v) as organizing agent for the detection of OFX and CPFX, respectively. The optical detection of both drugs at λex/em range 250-700 nm displayed linearity with a main correlation coefficient >0.999 at 1-300 (OFX-SDS-ZnONPs) and 0.5-100 (OFX-SDS-Al2O3NPs) ng mL-1,10-400 (CPFX-SDS-ZnONPs) and 0.1-50 (CPFX-SDS-Al2O3NPs) ng mL-1. The detection and quantification limits were found to be 0.04, 0.03, and 0.02, 0.04 ng mL-1, 0.13, 0.10, and 7.24, 0.09 ng mL-1 for the above-mentioned fluorescence systems, respectively. The suggested spectrofluorometric probes were validated and potentially applied for the estimation of OFX and CPFX in their bulk and commercial formulations.


Assuntos
Camellia sinensis , Nanopartículas Metálicas , Nanopartículas , Origanum , Óxido de Zinco , Ofloxacino , Óxido de Zinco/química , Ciprofloxacina , Nanopartículas/química , Óxidos , Óxido de Alumínio
10.
Heliyon ; 9(10): e20997, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37876475

RESUMO

A straightforward approach for creating fast and novel potentiometric sensors that are modified with multi-walled nanotubes (MWCNTs) was described. The impact of the selective sensor's material was studied. The suggested sensors were successfully fabricated for instant and fast detection of the prohibited ß-adrenoreceptor blocking agent acebutolol hydrochloride (AC) in commercial products. Acebutolol-phosphomolybdate (AC-PM) carbon paste sensor was formed by mixing AC and phosphomolybdic acid and graphite powder in the presence of o-nitrophenyl octyl ether (o-NPOE) as a plasticizing agent. The functionalized AC-PM-MWCNTs and AC-PM-MWCNTs-Al2O3 nanocomposite sensors were prepared and all parameters affecting the sensors' potential responses have been investigated as well as the green synthesis of Al2O3NPs has been characterized using various microscopic and spectroscopic techniques. AC-PM-MWCNTs and AC-PM-MWCNTs-Al2O3 nanocomposite sensors demonstrated linearity of 1.0 × 10-7-1.0 × 10-2 and 1.0 × 10-8-1.0 × 10-2 mol L-1, respectively with regression equations -53.571x + 423.24 (r = 0.999) and -57.107x + 518.54 (r = 0.999). It also revealed excellent selectivity and sensitivity for the determination and quantification of AC. The developed potentiometric system was suitable for the determination of AC in bulk powder and commercial products.

11.
Heliyon ; 9(5): e15793, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37180929

RESUMO

The extraordinary features of cerium oxide (CeO2) and zinc oxide (ZnO) nanostructures have encouraged substantial attention to those nanocomposites as probable electroactive complexes for sensing and biosensing purposes. In this study, an advanced novel factionalized CeO2/ZnO nanocomposite-aluminum wire membrane sensor was designed to assess pethidine hydrochloride (PTD) in commercial injection samples. Pethidine-reineckate (PTD-RK) was formed by mixing pethidine hydrochloride and ammonium reineckate (ARK) in the presence of polymeric matrix (polyvinyl chloride) and o-nitrophenyl octyl ether as a fluidizing agent. The functionalized nanocomposite sensor displayed a fast dynamic response and wide linearity for the detection of PTD. It also revealed excellent selectivity and sensitivity, high accuracy, and precision for the determination and quantification of PTD when compared with the unmodified sensor PTD-RK. The guidelines of analytical methodology requirements were obeyed to improve the suitability and validity of the suggested potentiometric system according to several criteria. The developed potentiometric system was suitable for the determination of PTD in bulk powder and commercial products.

12.
PLoS One ; 18(4): e0282742, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37011052

RESUMO

A new sunflower oil-chitosan decorated fly ash (sunflower oil/FA-CSNPs) bionanocomposite film was synthesized using the extract of Litopenaeus vannamei (White shrimp) and evaluated as an antibacterial and immunomodulatory agent. Fly ash-chitosan nanoparticles were produced by using chitosan (CS) isolated from white shrimp extract, glacial acetic acid and sodium tripolyphosphate solution as cross-linkage. The ultrafine polymeric sunflower oil-CS film was fabricated by treating fly ash-chitosan nanoparticles with sunflower oil in glacial acetic acid under continuous stirring for 24 h. The nanostructure of the fabricated polymeric film was confirmed and characterized by different microscopic and spectroscopic approaches. The surface morphology of pre-synthesized bionanocomposite film was found to be homogenous, even and without cracks and pores. The crystallinity of formed bionanocomposite film was noticed at angles (2θ) at 12.65°, 15.21°, 19.04°, 23.26°, 34.82°, and 37.23° in the XRD spectrum. The fabricated film displayed excellent stability up to 380 °C. The formed sunflower oil/FA-CSNPs bionanocomposite film showed promising antibacterial towards Bacillus subtilis with highest zone of inhibition of 34 mm and Pseudomonas aeruginosa with zone of inhibition of 28 nm. The as-synthesized bionanocomposite film exhibited highest cell viability effect (98.95%), followed by FA-CSNPs (83.25%) at 200 µg mL-1 concentrations. The bionanocomposite film exerted notable immunomodulatory effect by promoting phagocytosis and enhancing the production of cytokines (NO, IL-6, IL-1ß, and TNF-α) in macrophage-derived RAW264.7 cell line.


Assuntos
Quitosana , Helianthus , Nanocompostos , Nanopartículas , Quitosana/química , Cinza de Carvão/química , Óleo de Girassol , Ácido Acético , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Polímeros , Nanocompostos/química
13.
Molecules ; 28(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903341

RESUMO

BACKGROUND: The remarkable properties of nickel oxide (NiO) and cerium oxide (CeO2) nanostructures have attracted considerable interest in these nanocomposites as potential electroactive materials for sensor construction. METHODS: The mebeverine hydrochloride (MBHCl) content of commercial formulations was determined in this study using a unique factionalized CeO2/NiO-nanocomposite-coated membrane sensor. RESULTS: Mebeverine-phosphotungstate (MB-PT) was prepared by adding phosphotungstic acid to mebeverine hydrochloride and mixing with a polymeric matrix (polyvinyl chloride, PVC) and plasticizing agent o-nitrophenyl octyl ether. The new suggested sensor showed an excellent linear detection range of the selected analyte at 1.0 × 10-8-1.0 × 10-2 mol L-1 with regression equation EmV = (-29.429 ± 0.2) log [MB] + 347.86. However, the unfunctionalized sensor MB-PT displayed less linearity at 1.0 × 10-5-1.0 × 10-2 mol L-1 drug solution with regression equation EmV = (-26.603 ± 0.5) log [MB] + 256.81. By considering a number of factors, the applicability and validity of the suggested potentiometric system were improved following the rules of analytical methodological requirements. CONCLUSION: The created potentiometric technique worked well for determining MB in bulk substance and in medical commercial samples.


Assuntos
Nanocompostos , Fenetilaminas , Potenciometria/métodos
14.
Molecules ; 28(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903454

RESUMO

The existing study pronounces two newly developed spectrofluorimetric probes for the assay of ambroxol hydrochloride in its authentic and commercial formulations using an aluminum chelating complex and a biogenically mediated and synthesized aluminum oxide nanoparticles (Al2O3NPs) from Lavandula spica flower extract. The first probe is based on the formation of an aluminum charge transfer complex. However, the second probe is based on the effect of the unique optical characteristics of Al2O3NPs in the enhancement of fluorescence detection. The biogenically synthesized Al2O3NPs were confirmed using various spectroscopic and microscopic investigations. The fluorescence detections in the two probes were measured at a λex of 260 and 244 and a λem of 460 and 369 nm for the two suggested probes, respectively. The findings showed that the fluorescence intensity (FI) covered linear concentration ranges of 0.1-200 ng mL-1 and 1.0-100 ng mL-1 with a regression of ˃0.999 for AMH-Al2O3NPs-SDS and AMH-Al(NO3)3-SDS, respectively. The lower detection and quantification limits were evaluated and found to be 0.04 and 0.1 ng mL-1 and 0.7 and 0.1 ng/mL-1 for the abovementioned fluorescence probes, respectively. The two suggested probes were successfully applied for the assay of ambroxol hydrochloride (AMH) with excellent percentage recoveries of 99.65% and 99.85%, respectively. Excipients such as glycerol and benzoic acid used as additives in pharmaceutical preparations, several common cations, and amino acids, as well as sugars, were all found to have no interference with the approach.


Assuntos
Ambroxol , Lavandula , Nanopartículas , Óxido de Alumínio , Alumínio , Espectrometria de Fluorescência/métodos , Quelantes
15.
Polymers (Basel) ; 14(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36236096

RESUMO

Two metal oxide nanoparticles, magnesium oxide nanoparticles (MgONPs) and aluminum oxide nanoparticles (Al2O3NPs), were synthesized from green sources, Salvia officials and Cuminum cyminum seed extract, respectively. These nanoparticles were used for construction of potentiometric enhancement sensors employed for the estimation of ranitidine hydrochloride (RNT) in authentic powder and commercial products. The electroactive substance ranitidine-phosphotungstate (RNT-PT) was formed by combining RNT with phosphotungstic acid (PTA) in the presence of plasticizing material o-nitrophenyloctyl ether (o-NPOE). The outcomes showed that the enhanced MgO and Al2O3 nanosensors behaved linearly across the concentration ranges 1.0 × 10-9-1.0 × 10-2 and 1.0 × 10-10-1.0 × 10-2 mol L-1, respectively. However, the conventional sensor (RNT-PT) displayed a linearity over 1.0 × 10-6-1.0 × 10-2 mol L-1. Least square equations were calculated as EmV = (54.1 ± 0.5) log (RNT) + 762.33, EmV = (58.6 ± 0.2) log (RNT) + 696.48, and EmV = (52.2 ± 0.7) log (RNT) + 756.76 for enriched nanometal oxides modified and conventional sensors, respectively. The correlation coefficients of regression equations were 0.9997, 0.9995, and 0.9992 for the above suggested sensors, respectively. The recorded results showed excellent sensitivity and selectivity of the modified nanometal oxide sensors for the quantification of the analyzed drug in its authentic samples and commercial products.

16.
Nanomaterials (Basel) ; 12(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35808148

RESUMO

The new research presents highly conductive polymeric membranes with a large surface area to volume ratio of metal oxide nanoparticles that were used to determine atropine sulfate (AT) in commercial dosage forms. In sensing and biosensing applications, the nanomaterials zinc oxide (ZnONPs) and magnesium oxide (MgONPs) were employed as boosting potential electroactive materials. The electroactive atropine phosphotungstate (AT-PT) was created by combining atropine sulfate and phosphotungstic acid (PTA) and mixing it with polymeric polyvinyl chloride (PVC) with the plasticizer o-nitrophenyl octyl ether (o-NPOE). The modified sensors AT-PT-ZnONPs or AT-PT-MgONPs showed excellent selectivity and sensitivity for the measurements of atropine with a linear concentration range of 6.0 × 10-8 - 1.0 × 10-3 and 8.0 × 10-8 - 1.0 × 10-3 mol L-1 with regression equations of E(mV) = (56 ± 0.5) log [AT] - 294 and E(mV) = (54 ± 0.5) log [AT] - 422 for AT-PT-NPs or AT-PT-MgONPs sensors, respectively. The AT-PT coated wire sensor, on the other hand, showed a Nernstian response at 4.0 × 10-6 - 1.0 × 10-3 mol L-1 and a regression equation E(mV) = (52.1 ± 0.2) log [AT] + 198. The methodology-recommended guidelines were used to validate the suggested modified potentiometric systems against various criteria.

17.
Nanomaterials (Basel) ; 12(8)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35458081

RESUMO

BACKGROUND: The exceptional characteristics of cerium oxide (CeO2) and aluminum oxide (Al2O3) nanoscales have inspired significant attention to those nanocomposites as possible electroactive resources for applications of sensing and biosensing. METHODS: In this research, an innovative new factionalized CeO2/Al2O3 nanocomposite membrane sensor was presented to assess tramadol hydrochloride (TRD) in marketable products. RESULTS: Tramadol-phosphomolybdate (TRD-PM) was formed by mixing tramadol hydrochloride and phosphomolybdic acid (PMA) in the attendance of polymeric matrix and o-nitrophenyloctyl ether solvent mediator. With 1.0 × 10-10-1.0 × 10-2 mol L-1 as a range of linearity and EmV = (57.567 ± 0.2) log [TRD] + 676.29 as a regression equation, the functionalized sensor using TRD-PM-CeO2/Al2O3 nanocomposite showed great selectivity and sensitivity for the discriminating and measurement of TRD. Using the regression equation EmV = (52.143 ± 0.4) log [TRD] + 431.45, the unmodified coated wire sensor of TRD-PM, on the other hand, showed a Nernstian response between 1.0 × 10-6 and 1.0 × 10-2 mol L-1, Using the methodology's specified guidelines, the proposed improved potentiometric system was validated against several criteria. CONCLUSION: The suggested method is suitable for the determination of TRD in its products.

18.
Plants (Basel) ; 11(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35161341

RESUMO

A facile, eco-friendly fluorescence approach based on the biogenic formation of zinc oxide nanoparticles using the biomass of Plicosepalus curviflorus shoots was developed. The suggested approach was employed to analyze three phenolic compounds (catechin, curviflorside, and curviflorin) isolated from the shoots of P. curviflorus. The surface morphology of the prepared ZnONPs was characterized by carrying out different microscopic and spectroscopic investigations. A significant UV-Vis absorption peak of ZnONPs was recognized at 345 nm and the FT-IR spectra of the isolated catechin, curviflorside, and curviflorin in the presence of sodium dodecyl sulfate (SDS) and ZnONPs were recorded at λem 470, 490, and 484 nm after excitation at λex 380, 420, and 410 nm. The suggested fluorescence method displayed linear concentration ranges of 10-120, 5-100, and 10-150 µg mL-1 for the three isolated compounds, respectively. The shoot extract, isolated compounds, and ZnONPs were screened for antibacterial and anticancer effects against four different types of bacterial strains and HeLa cells, respectively. The ZnONPs exhibited the highest zone of inhibition against Escherichia coli and Staphylococcus aureus strains when compared with pure, isolated compounds and shoot extract. The anticancer potential of ZnONPs (64%) was stronger as compared to the 160 µg mL-1 of shoot extract (49%), catechin (52%), curviflorside (54%), and curviflorin (58%) at 160 µg mL-1. Moreover, all the samples were investigated for hemolysis activity and showed a potent anti-hemolytic effect. The developed analytical method showed excellent sensitivity and reliability for the concurrent analysis of the isolated bioactive markers.

19.
Pharmaceutics ; 13(12)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34959478

RESUMO

The current study is focused on the biosynthesis of nutmeg oil/ polyurethane/ZnONPs bionanocomposite film for immunomodulatory and antioxidant activities. The fabricated film was prepared by using naturally extracted nutmeg oil functionalized with ZnONPs in the presence of polyutherane (PU) medium. The bionanocomposite film was obtained by incorporating dropwise 10 % (w/v) of nutmeg oil to the PU solution/ZnONPs blend. The active constituents of nutmeg oil were determined by gas chromatography coupled with mass spectrometry (GC-MS). The morphological characteristics of the resulting bionanocomposite film were confirmed using various microscopic and spectroscopic methods. Immunomodulatory potential of bionanocomposite was evaluated for RAW 264.7 macrophages. The results exhibited an excellent reduction in inflammatory cytokines (IL-6, IL-10, and TNFα) secretions after the treatment with bionanocomposite. The bionanocomposite exerted the highest inhibitory effects on certain cell signaling constituents that influence the initiation of expression of proinflammatory cytokines. The bionanocomposite was also tested for DPPH and ABTS free radicals scavenging assays and showed excellent antioxidant potential with IC50 values (0.28 ± 0.22 and 0.49 ± 0.36), respectively. The outcomes suggested promising immunomodulatory and antioxidant potentials for the biogenic synthesized nutmeg oil/PU/ZnONPs polymeric bionanocomposite.

20.
Polymers (Basel) ; 13(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34960872

RESUMO

A unique morphological Sesamum radiatum oil/polyvinylpyrrolidone/gold polymeric bionanocomposite film was synthesized using the S. radiatum oil dispersed in a polymeric polyvinylpyrrolidone (PVP) matrix and decorated with gold nanoparticles (AuNPs). The chemical and physical characteristics as well as the thermal stability of the synthesized bionanocomposite film were investigated using various spectroscopic and microscopic techniques. The microscopic analysis confirmed well dispersed AuNPs in the PVP- S. radiatum oil matrix with particle size of 100 nm. Immunomodulatory and antiprotozoal potentials of the suggested bionanocomposite film were evaluated for lipopolysaccharide-induced BV-2 microglia and against L. amazonensis, L. mexicana promastigotes and T. cruzi epimastigotes, respectively. The results exerted outstanding reduction of inflammatory cytokines' (IL-6 and TNFα) secretions after pretreatment of bionanocomposite. The bionanocomposite exhibited large inhibitory effects on certain cell signaling components that are related to the activation of expression of proinflammatory cytokines. Additionally, AuNPs and bionanocomposite exhibited excellent growth inhibition of L. mexicana and L. amazonensis promastigotes with IC50 (1.71 ± 1.49, 1.68 ± 0.75) and (1.12 ± 1.10, 1.42 ± 0.69), respectively. However, the nanomaterials showed moderate activity towards T. cruzi. All outcomes indicated promising immunomodulatory, antiprotozoal, and photocatalytic potentials for the synthesized S. radiatum oil/PVP/Au polymeric bionanocomposite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA