Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38293221

RESUMO

Although vaccines have reduced COVID-19 disease burden, their efficacy in helminth infection endemic areas is not well characterized. We evaluated the impact of infection by Heligmosomoides polygyrus bakeri (Hpb), a murine intestinal hookworm, on the efficacy of an mRNA vaccine targeting the Wuhan-1 spike protein of SARS-CoV-2. Although immunization generated similar B cell responses in Hpb-infected and uninfected mice, polyfunctional CD4+ and CD8+ T cell responses were markedly reduced in Hpb-infected mice. Hpb-infected and mRNA vaccinated mice were protected against the ancestral SARS-CoV-2 strain WA1/2020, but control of lung infection was diminished against an Omicron variant compared to animals immunized without Hpb infection. Helminth mediated suppression of spike-specific CD8+ T cell responses occurred independently of STAT6 signaling, whereas blockade of IL-10 rescued vaccine-induced CD8+ T cell responses. In mice, intestinal helminth infection impairs vaccine induced T cell responses via an IL-10 pathway and compromises protection against antigenically shifted SARS-CoV-2 variants.

2.
Sci Transl Med ; 15(713): eadf4100, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37703353

RESUMO

With the success of messenger RNA (mRNA) vaccines against coronavirus disease 2019, strategies can now focus on improving vaccine potency, breadth, and stability. We designed and evaluated domain-based mRNA vaccines encoding the wild-type spike protein receptor binding domain (RBD) or N-terminal domain (NTD) alone or in combination. An NTD-RBD-linked candidate vaccine, mRNA-1283, showed improved antigen expression, antibody responses, and stability at refrigerated temperatures (2° to 8°C) compared with the clinically available mRNA-1273, which encodes the full-length spike protein. In BALB/c mice administered mRNA-1283 as a primary series, booster, or variant-specific booster, similar or greater immune responses from viral challenge were observed against wild-type, beta, delta, or omicron (BA.1) viruses compared with mRNA-1273-immunized mice, especially at lower vaccine dosages. K18-hACE2 mice immunized with mRNA-1283 or mRNA-1273 as a primary series demonstrated similar degrees of protection from challenge with SARS-CoV-2 Delta and Omicron variants at all vaccine dosages. These results support clinical assessment of mRNA-1283, which has now entered clinical trials (NCT05137236).


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , COVID-19/prevenção & controle , Vacina de mRNA-1273 contra 2019-nCoV , Glicoproteína da Espícula de Coronavírus/genética , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , Vacinas de mRNA
3.
Nat Med ; 29(1): 247-257, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265510

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in the Omicron lineage has resulted in diminished Coronavirus Disease 2019 (COVID-19) vaccine efficacy and persistent transmission. In this study, we evaluated the immunogenicity and protective efficacy of two, recently authorized, bivalent COVID-19 vaccines that contain two mRNAs encoding Wuhan-1 and either BA.1 (mRNA-1273.214) or BA.4/5 (mRNA-1273.222) spike proteins. As a primary two-dose immunization series in mice, both bivalent vaccines induced greater neutralizing antibody responses against Omicron variants than the parental, monovalent mRNA-1273 vaccine. When administered to mice as a booster at 7 months after the primary vaccination series with mRNA-1273, the bivalent vaccines induced broadly neutralizing antibody responses. Whereas most anti-Omicron receptor binding domain antibodies in serum induced by mRNA-1273, mRNA-1273.214 and mRNA-1273.222 boosters cross-reacted with the antecedent Wuhan-1 spike antigen, the mRNA-1273.214 and mRNA-1273.222 bivalent vaccine boosters also induced unique BA.1-specific and BA.4/5-specific responses, respectively. Although boosting with parental or bivalent mRNA vaccines substantially improved protection against BA.5 compared to mice receiving two vaccine doses, the levels of infection, inflammation and pathology in the lung were lowest in animals administered the bivalent mRNA vaccines. Thus, boosting with bivalent Omicron-based mRNA-1273.214 or mRNA-1273.222 vaccines enhances immunogenicity and confers protection in mice against a currently circulating SARS-CoV-2 strain.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Camundongos , Humanos , Vacina de mRNA-1273 contra 2019-nCoV , SARS-CoV-2/genética , COVID-19/prevenção & controle , Vacinas de mRNA , Anticorpos Neutralizantes , RNA Mensageiro/genética , Vacinas Combinadas , Anticorpos Antivirais
4.
Antibodies (Basel) ; 11(4)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36412833

RESUMO

Monoclonal antibodies have been used successfully as recombinant protein therapy; however, for HIV, multiple broadly neutralizing antibodies may be necessary. We used the mRNA-LNP platform for in vivo co-expression of 3 broadly neutralizing antibodies, PGDM1400, PGT121, and N6, directed against the HIV-1 envelope protein. mRNA-encoded HIV-1 antibodies were engineered as single-chain Fc (scFv-Fc) to overcome heavy- and light-chain mismatch. In vitro neutralization breadth and potency of the constructs were compared to their parental IgG form. We assessed the ability of these scFv-Fcs to be expressed individually and in combination in vivo, and neutralization and pharmacokinetics were compared to the corresponding full-length IgGs. Single-chain PGDM1400 and PGT121 exhibited neutralization potency comparable to parental IgG, achieving peak systemic concentrations ≥ 30.81 µg/mL in mice; full-length N6 IgG achieved a peak concentration of 974 µg/mL, but did not tolerate single-chain conversion. The mRNA combination encoding full-length N6 IgG and single-chain PGDM1400 and PGT121 was efficiently expressed in mice, achieving high systemic concentration and desired neutralization potency. Analysis of mice sera demonstrated each antibody contributed towards neutralization of multiple HIV-1 pseudoviruses. Together, these data show that the mRNA-LNP platform provides a promising approach for antibody-based HIV treatment and is well-suited for development of combination therapeutics.

5.
bioRxiv ; 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36238717

RESUMO

With the success of mRNA vaccines against coronavirus disease 2019 (COVID-19), strategies can now focus on improving vaccine potency, breadth, and stability. We present the design and preclinical evaluation of domain-based mRNA vaccines encoding the wild-type spike-protein receptor-binding (RBD) and/or N-terminal domains (NTD). An NTD-RBD linked candidate vaccine, mRNA-1283, showed improved antigen expression, antibody responses, and stability at refrigerated temperatures (2-8°C) compared with the clinically available mRNA-1273, which encodes the full-length spike protein. In mice administered mRNA-1283 as a primary series, booster, or variant-specific booster, similar or greater immune responses and protection from viral challenge were observed against wild-type, beta, delta, or omicron (BA. 1) compared with mRNA-1273 immunized mice, especially at lower vaccine dosages. These results support clinical assessment of mRNA-1283 ( NCT05137236 ). One Sentence Summary: A domain-based mRNA vaccine, mRNA-1283, is immunogenic and protective against SARS-CoV-2 and emerging variants in mice.

6.
bioRxiv ; 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36263060

RESUMO

The emergence of SARS-CoV-2 variants in the Omicron lineage with large numbers of substitutions in the spike protein that can evade antibody neutralization has resulted in diminished vaccine efficacy and persistent transmission. One strategy to broaden vaccine-induced immunity is to administer bivalent vaccines that encode for spike proteins from both historical and newly-emerged variant strains. Here, we evaluated the immunogenicity and protective efficacy of two bivalent vaccines that recently were authorized for use in Europe and the United States and contain two mRNAs encoding Wuhan-1 and either BA.1 (mRNA-1273.214) or BA.4/5 (mRNA-1273.222) spike proteins. As a primary immunization series in BALB/c mice, both bivalent vaccines induced broader neutralizing antibody responses than the constituent monovalent vaccines (mRNA-1273 [Wuhan-1], mRNA-1273.529 [BA.1], and mRNA-1273-045 [BA.4/5]). When administered to K18-hACE2 transgenic mice as a booster at 7 months after the primary vaccination series with mRNA-1273, the bivalent vaccines induced greater breadth and magnitude of neutralizing antibodies compared to an mRNA-1273 booster. Moreover, the response in bivalent vaccine-boosted mice was associated with increased protection against BA.5 infection and inflammation in the lung. Thus, boosting with bivalent Omicron-based mRNA-1273.214 or mRNA-1273.222 vaccines enhances immunogenicity and protection against currently circulating SARS-CoV-2 strains.

7.
Med ; 3(5): 309-324.e6, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35584653

RESUMO

BACKGROUND: Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019, viral variants with greater transmissibility or immune-evasion properties have arisen, which could jeopardize recently deployed vaccine- and antibody-based countermeasures. METHODS: Here, we evaluated in mice and hamsters the efficacy of a pre-clinical version of the Moderna mRNA vaccine (mRNA-1273) and the Johnson & Johnson recombinant adenoviral-vectored vaccine (Ad26.COV2.S) against the B.1.621 (Mu) variant of SARS-CoV-2, which contains spike mutations T95I, Y144S, Y145N, R346K, E484K, N501Y, D614G, P681H, and D950N. FINDINGS: Immunization of 129S2 and K18-human ACE2 transgenic mice with the mRNA-1273 vaccine protected against weight loss, lung infection, and lung pathology after challenge with the B.1.621 or WA1/2020 N501Y/D614G SARS-CoV-2 strain. Similarly, immunization of 129S2 mice and Syrian hamsters with a high dose of Ad26.COV2.S reduced lung infection after B.1.621 virus challenge. CONCLUSIONS: Thus, immunity induced by the mRNA-1273 or Ad26.COV2.S vaccine can protect against the B.1.621 variant of SARS-CoV-2 in multiple animal models. FUNDING: This study was supported by the NIH (R01 AI157155 and U01 AI151810), NIAID Centers of Excellence for Influenza Research and Response [CEIRR] contracts 75N93021C00014 and 75N93021C00016, and the Collaborative Influenza Vaccine Innovation Centers [CIVIC] contract 75N93019C00051. It was also supported, in part, by the National Institutes of Allergy and Infectious Diseases Center for Research on Influenza Pathogenesis (HHSN272201400008C) and the Japan Program for Infectious Diseases Research and Infrastructure (JP21wm0125002) from the Japan Agency for Medical Research and Development (AMED).


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , COVID-19 , Influenza Humana , Vacinas de mRNA , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Vacina de mRNA-1273 contra 2019-nCoV/farmacologia , Ad26COVS1 , Animais , Anticorpos Neutralizantes , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/farmacologia , Cricetinae , Humanos , Camundongos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de mRNA/imunologia , Vacinas de mRNA/farmacologia
8.
Cell ; 185(9): 1572-1587.e11, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35452622

RESUMO

The large number of spike substitutions in Omicron lineage variants (BA.1, BA.1.1., and BA.2) could jeopardize the efficacy of SARS-CoV-2 vaccines. We evaluated in mice the protective efficacy of the Moderna mRNA-1273 vaccine against BA.1 before or after boosting. Whereas two doses of mRNA-1273 vaccine induced high levels of neutralizing antibodies against historical WA1/2020 strains, lower levels against BA.1 were associated with breakthrough infection and inflammation in the lungs. A primary vaccination series with mRNA-1273.529, an Omicron-matched vaccine, potently neutralized BA.1 but inhibited historical or other SARS-CoV-2 variants less effectively. However, boosting with either mRNA-1273 or mRNA-1273.529 vaccines increased neutralizing titers and protection against BA.1 and BA.2 infection. Nonetheless, the neutralizing antibody titers were higher, and lung viral burden and cytokines were slightly lower in mice boosted with mRNA-1273.529 and challenged with BA.1. Thus, boosting with mRNA-1273 or mRNA-1273.529 enhances protection against Omicron infection with limited differences in efficacy measured.


Assuntos
COVID-19 , SARS-CoV-2 , Vacina de mRNA-1273 contra 2019-nCoV , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Camundongos , SARS-CoV-2/genética , Vacinação , Vacinas Sintéticas , Vacinas de mRNA
9.
bioRxiv ; 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35169795

RESUMO

The B.1.1.529 Omicron variant jeopardizes vaccines designed with early pandemic spike antigens. Here, we evaluated in mice the protective activity of the Moderna mRNA-1273 vaccine against B.1.1.529 before or after boosting with preclinical mRNA-1273 or mRNA-1273.529, an Omicron-matched vaccine. Whereas two doses of mRNA-1273 vaccine induced high levels of serum neutralizing antibodies against historical WA1/2020 strains, levels were lower against B.1.1.529 and associated with infection and inflammation in the lung. A primary vaccination series with mRNA-1273.529 potently neutralized B.1.1.529 but showed limited inhibition of historical or other SARS-CoV-2 variants. However, boosting with mRNA-1273 or mRNA-1273.529 vaccines increased serum neutralizing titers and protection against B.1.1.529 infection. Nonetheless, the levels of inhibitory antibodies were higher, and viral burden and cytokines in the lung were slightly lower in mice given the Omicron-matched mRNA booster. Thus, in mice, boosting with mRNA-1273 or mRNA-1273.529 enhances protection against B.1.1.529 infection with limited differences in efficacy measured.

10.
Sci Transl Med ; 14(630): eabm3302, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-34846168

RESUMO

Although mRNA vaccines encoding the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prevent COVID-19, the emergence of new viral variants jeopardizes their efficacy. Here, we assessed the immunogenicity and protective activity of historical (mRNA-1273, designed for Wuhan-1 spike protein) or modified (mRNA-1273.351, designed for B.1.351 spike protein) Moderna mRNA vaccines in 129S2 and K18-hACE2 mice. Mice were immunized with either high-dose or low-dose formulations of the mRNA vaccines, where low-dose vaccination modeled suboptimal immune responses. Immunization with formulations at either dose induced neutralizing antibodies in serum against ancestral SARS-CoV-2 WA1/2020 and several virus variants, although serum titers were lower against the B.1.617.2 (Delta) virus. Protection against weight loss and lung pathology was observed with all high-dose vaccines against all viruses. However, low-dose formulations of the vaccines, which produced lower magnitude antibody and T cell responses, showed breakthrough lung infections with B.1.617.2 and development of pneumonia in K18-hACE2 mice. Thus, in individuals with reduced immunity after mRNA vaccination, breakthrough infection and disease may occur with some SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Humanos , Camundongos , Glicoproteína da Espícula de Coronavírus/genética , Vacinas Sintéticas , Vacinas de mRNA
11.
Nat Med ; 27(12): 2234-2245, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34887575

RESUMO

The development of a protective vaccine remains a top priority for the control of the HIV/AIDS pandemic. Here, we show that a messenger RNA (mRNA) vaccine co-expressing membrane-anchored HIV-1 envelope (Env) and simian immunodeficiency virus (SIV) Gag proteins to generate virus-like particles (VLPs) induces antibodies capable of broad neutralization and reduces the risk of infection in rhesus macaques. In mice, immunization with co-formulated env and gag mRNAs was superior to env mRNA alone in inducing neutralizing antibodies. Macaques were primed with a transmitted-founder clade-B env mRNA lacking the N276 glycan, followed by multiple booster immunizations with glycan-repaired autologous and subsequently bivalent heterologous envs (clades A and C). This regimen was highly immunogenic and elicited neutralizing antibodies against the most prevalent (tier-2) HIV-1 strains accompanied by robust anti-Env CD4+ T cell responses. Vaccinated animals had a 79% per-exposure risk reduction upon repeated low-dose mucosal challenges with heterologous tier-2 simian-human immunodeficiency virus (SHIV AD8). Thus, the multiclade env-gag VLP mRNA platform represents a promising approach for the development of an HIV-1 vaccine.


Assuntos
Anticorpos Neutralizantes/imunologia , Genes env , Genes gag , Anticorpos Anti-HIV/biossíntese , HIV-1/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vacinas Sintéticas/imunologia , Vacinas de mRNA/imunologia , Animais , Anticorpos Anti-HIV/imunologia , Imunização Secundária , Macaca mulatta , Fatores de Risco , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas de mRNA/administração & dosagem
12.
Nature ; 586(7830): 567-571, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32756549

RESUMO

A vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed to control the coronavirus disease 2019 (COVID-19) global pandemic. Structural studies have led to the development of mutations that stabilize Betacoronavirus spike proteins in the prefusion state, improving their expression and increasing immunogenicity1. This principle has been applied to design mRNA-1273, an mRNA vaccine that encodes a SARS-CoV-2 spike protein that is stabilized in the prefusion conformation. Here we show that mRNA-1273 induces potent neutralizing antibody responses to both wild-type (D614) and D614G mutant2 SARS-CoV-2 as well as CD8+ T cell responses, and protects against SARS-CoV-2 infection in the lungs and noses of mice without evidence of immunopathology. mRNA-1273 is currently in a phase III trial to evaluate its efficacy.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/imunologia , Pneumonia Viral/prevenção & controle , Vacinas Virais/imunologia , Vacina de mRNA-1273 contra 2019-nCoV , Animais , Anticorpos Neutralizantes/imunologia , Betacoronavirus/genética , Linfócitos T CD8-Positivos/imunologia , COVID-19 , Vacinas contra COVID-19 , Ensaios Clínicos Fase III como Assunto , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Feminino , Pulmão/imunologia , Pulmão/virologia , Camundongos , Mutação , Nariz/imunologia , Nariz/virologia , Pneumonia Viral/virologia , RNA Mensageiro/genética , RNA Viral/genética , SARS-CoV-2 , Células Th1/imunologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/imunologia , Vacinas Virais/química , Vacinas Virais/genética
13.
bioRxiv ; 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32577634

RESUMO

A SARS-CoV-2 vaccine is needed to control the global COVID-19 public health crisis. Atomic-level structures directed the application of prefusion-stabilizing mutations that improved expression and immunogenicity of betacoronavirus spike proteins. Using this established immunogen design, the release of SARS-CoV-2 sequences triggered immediate rapid manufacturing of an mRNA vaccine expressing the prefusion-stabilized SARS-CoV-2 spike trimer (mRNA-1273). Here, we show that mRNA-1273 induces both potent neutralizing antibody and CD8 T cell responses and protects against SARS-CoV-2 infection in lungs and noses of mice without evidence of immunopathology. mRNA-1273 is currently in a Phase 2 clinical trial with a trajectory towards Phase 3 efficacy evaluation.

14.
Sci Immunol ; 4(35)2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101672

RESUMO

Infection with chikungunya virus (CHIKV) causes an acute illness characterized by fever, rash, and arthralgia. However, CHIKV infection can sometimes progress to chronic arthritis or even lethal disease. CHIKV continues to cause substantial morbidity worldwide as its vector mosquitoes expand and spread. There are currently no approved vaccines or antiviral drugs available for the prevention or treatment of CHIKV. Although antibody therapy has shown promise in the prevention or treatment of CHIKV disease in preclinical models, challenges remain for implementing such therapies. Here, from the B cells of a survivor of natural CHIKV infection, we isolated ultrapotent neutralizing human monoclonal antibodies (mAbs) and encoded their sequences into mRNA molecules delivered by infusion. One human mAb, CHKV-24, was expressed to biologically significant levels in vivo after infusion of mRNAs in lipid nanoparticles in mice. We evaluated the protective capacity of CHKV-24 mAb immunoglobulin G protein or mRNA in mouse models of CHIKV infection. Treatment with CHKV-24 mRNA protected mice from arthritis, musculoskeletal tissue infection, and lethality and reduced viremia to undetectable levels at 2 days after inoculation. Infusion of macaques with CHKV-24 mRNA achieved a mean maximal mAb concentration of 10.1 to 35.9 micrograms per milliliter, with a half-life of 23 days, a level well above what is needed for protection in mice. Studies with CHKV-24 mRNA in macaques demonstrated a dose-response effect after the first dose of mRNA and maintained levels after second dose. These preclinical data with CHKV-24 mRNA suggest that it might be useful to prevent human disease.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Febre de Chikungunya/imunologia , Vírus Chikungunya/imunologia , Nanocápsulas/química , RNA Mensageiro/farmacologia , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Linfócitos B , Linhagem Celular , Febre de Chikungunya/terapia , Febre de Chikungunya/virologia , Cricetinae , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/uso terapêutico , Lipídeos/química , Macaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/química , RNA Mensageiro/uso terapêutico
15.
RNA ; 18(3): 557-68, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22294662

RESUMO

Since the discovery of RNA interference (RNAi), researchers have identified a variety of small interfering RNA (siRNA) structures that demonstrate the ability to silence gene expression through the classical RISC-mediated mechanism. One such structure, termed "Dicer-substrate siRNA" (dsiRNA), was proposed to have enhanced potency via RISC-mediated gene silencing, although a comprehensive comparison of canonical siRNAs and dsiRNAs remains to be described. The present study evaluates the in vitro and in vivo activities of siRNAs and dsiRNAs targeting Phosphatase and Tensin Homolog (PTEN) and Factor VII (FVII). More than 250 compounds representing both siRNA and dsiRNA structures were evaluated for silencing efficacy. Lead compounds were assessed for duration of silencing and other key parameters such as cytokine induction. We identified highly active compounds from both canonical siRNAs and 25/27 dsiRNAs. Lead compounds were comparable in potency both in vitro and in vivo as well as duration of silencing in vivo. Duplexes from both structural classes tolerated 2'-OMe chemical modifications well with respect to target silencing, although some modified dsiRNAs demonstrated reduced activity. On the other hand, dsiRNAs were more immunostimulatory as compared with the shorter siRNAs, both in vitro and in vivo. Because the dsiRNA structure does not confer any appreciable benefits in vitro or in vivo while demonstrating specific liabilities, further studies are required to support their applications in RNAi therapeutics.


Assuntos
Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ribonuclease III/metabolismo , Animais , Sequência de Bases , Fator VII/genética , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , PTEN Fosfo-Hidrolase/genética , Complexo de Inativação Induzido por RNA/metabolismo , Ratos
17.
Antisense Nucleic Acid Drug Dev ; 13(2): 83-105, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12804036

RESUMO

Small interfering RNAs (siRNAs) induce sequence-specific gene silencing in mammalian cells and guide mRNA degradation in the process of RNA interference (RNAi). By targeting endogenous lamin A/C mRNA in human HeLa or mouse SW3T3 cells, we investigated the positional variation of siRNA-mediated gene silencing. We find cell-type-dependent global effects and cell-type-independent positional effects. HeLa cells were about 2-fold more responsive to siRNAs than SW3T3 cells but displayed a very similar pattern of positional variation of lamin A/C silencing. In HeLa cells, 26 of 44 tested standard 21-nucleotide (nt) siRNA duplexes reduced the protein expression by at least 90%, and only 2 duplexes reduced the lamin A/C proteins to <50%. Fluorescent chromophores did not perturb gene silencing when conjugated to the 5'-end or 3'-end of the sense siRNA strand and the 5'-end of the antisense siRNA strand, but conjugation to the 3'-end of the antisense siRNA abolished gene silencing. RNase-protecting phosphorothioate and 2'-fluoropyrimidine RNA backbone modifications of siRNAs did not significantly affect silencing efficiency, although cytotoxic effects were observed when every second phosphate of an siRNA duplex was replaced by phosphorothioate. Synthetic RNA hairpin loops were subsequently evaluated for lamin A/C silencing as a function of stem length and loop composition. As long as the 5'-end of the guide strand coincided with the 5'-end of the hairpin RNA, 19-29 base pair (bp) hairpins effectively silenced lamin A/C, but when the hairpin started with the 5'-end of the sense strand, only 21-29 bp hairpins were highly active.


Assuntos
Inativação Gênica , RNA Catalítico/química , RNA Catalítico/genética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Animais , Sequência de Bases , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular , Células HeLa , Humanos , Lamina Tipo A/química , Camundongos , Microscopia de Fluorescência , Modelos Químicos , Dados de Sequência Molecular , Oligonucleotídeos Antissenso/química , Fases de Leitura Aberta , Isoformas de Proteínas , Pirimidinas/química , RNA/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Células Swiss 3T3 , Tionucleotídeos/química , Transfecção
18.
Methods ; 26(2): 199-213, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12054897

RESUMO

RNA interference (RNAi) is a highly conserved gene silencing mechanism that uses double-stranded RNA (dsRNA) as a signal to trigger the degradation of homologous mRNA. The mediators of sequence-specific mRNA degradation are 21- to 23-nt small interfering RNAs (siRNAs) generated by ribonuclease III cleavage from longer dsRNAs. Twenty-one-nucleotide siRNA duplexes trigger specific gene silencing in mammalian somatic cells without activation of the unspecific interferon response. Here we provide a collection of protocols for siRNA-mediated knockdown of mammalian gene expression. Because of the robustness of the siRNA knockdown technology, genomewide analysis of human gene function in cultured cells has now become possible.


Assuntos
Inativação Gênica , Técnicas Genéticas , RNA não Traduzido/genética , RNA/química , Animais , Sequência de Bases , Western Blotting , Linhagem Celular , Citoesqueleto , DNA , Relação Dose-Resposta a Droga , Drosophila , Genes Reporter , Células HeLa , Humanos , Luciferases/metabolismo , Microscopia de Fluorescência , Modelos Genéticos , Dados de Sequência Molecular , Oligonucleotídeos/química , RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , RNA não Traduzido/química , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA